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Sarbassov et al., 2004; Kamada et al., 2005). It will be of great 
interest to learn whether the Ras–TORC2 pathway plays a similar 
role in the cytoskeleton organization and migration of these cells.

Materials and methods
Cell growth and differentiation
Cells were cultured axenically in HL5 medium at 22°C. Cells carrying ex-
pression constructs were maintained in HL5 medium containing 10–20 
µg/ml G418 or 30–40 µg/ml hygromycin, or both as required. For differ-
entiation, cells grown in HL5 were washed with development buffer (DB;  
5 mM Na2HPO4, 5 mM KH2PO4, 2 mM MgSO4, and 0.2 mM CaCl2), 
starved in DB for 1 h at 2 × 107 cells/ml, and then pulsed with 50 nM 
cAMP every 6 min for 4.5 h. To induce the expression of Flag-RasC or  
-RasCQ62L, doxycycline was added during the last 2 h of differentiation at 
a concentration of 40 µg/ml.

Gene disruption and plasmid construction
rasC cells were constructed in an AX2 background. A disruption cassette, 
consisting of a genomic DNA fragment amplified by PCR using primers  
5-CATTCGATTGTATAATACACAACTAAATCA-3 and 5-GGGGTTGGATCAT-
ATTCAGCAATGAATTGA-3, the Blasticidin S resistant (BSR) cassette from 
pLPBLP (Faix et al., 2004), followed by a genomic DNA fragment amplified 
by PCR using primers 5-GAGCAAGGATGTTCTAATTGAATTGATTTC-3 and 
5-GGGCATCAGCCAAATCTAGAGTAAACGTT-3, was used to target the 

A role for a Ras protein in PKB activation and cell migra-
tion may not seem surprising, as it has been shown that Ras  
proteins bind to both D. discoideum and mammalian PI3Ks  
(Rodriguez-Viciana et al., 1994; Pacold et al., 2000; Funamoto 
et al., 2002; Kae et al., 2004). However, our data show that the 
effects of RasCQ62L on chemotactic responses and the cytoskeletal 
activity are primarily mediated through TORC2. Furthermore, 
we found that disruption of PKBA but not PKBR1 in pten cells 
suppresses its chemotaxis defects (unpublished data). Therefore, 
although expressing RasCQ62L and deleting PTEN both result in 
hyperstimulation of the PKB signaling, their effects appear to be 
mediated through different PKB isoforms. Our finding that 
TORC2 is a critical effector in Ras-mediated cell migration may 
serve as a stepping stone to understand cell motility in other 
organisms. PIP3-independent chemotaxis and chemoattractant-
stimulated Ras activation have also been observed in human 
neutrophils (Worthen et al., 1994; Zheng et al., 1997). In many 
cancer cells that display altered cell migration, Ras proteins are 
found to be persistently activated (Oxford and Theodorescu, 
2003). In addition, TORC2 has been suggested to regulate cyto-
skeletal-based events in various systems (Jacinto et al., 2004; 

Figure 8. Reconstitution of PKB activation in vitro with immunopurified TORC2. (A) Cell lysates from piaA cells expressing Flag-RasC or -RasCQ62L were 
mixed with HSS made from wild-type (WT) cells or piaA cells expressing Flag-PiaA or with Flag-eluted immunoprecipitate from Flag/piaA cells or  
Flag-PiaA/piaA cells. (B) Membrane fractions (MF) prepared from Flag-RasC/piaA or Flag-RasCQ62L /piaA cells were mixed with Flag-eluted immuno-
precipitate from Flag/piaA cells or Flag-PiaA/piaA cells. (C) Cell lysates from rip3 cells expressing Flag-RasC or -RasCQ62L were mixed with Flag-eluted 
immunoprecipitate from Flag/piaA cells or Flag-PiaA/piaA cells. (D) Cell lysates from piaA cells expressing Flag-RasCQ62L were mixed with Flag-eluted 
immunoprecipitate from Flag-PiaA/piaA cells or Flag-PiaA/rip3 cells. (E) Flag-eluted immunoprecipitate from Flag-PiaA/piaA cells was treated with 
increasing concentrations of PP242 before being mixed with cell lysates from piaA cells expressing Flag-RasCQ62L. (F) Whole cell extracts were prepared 
from rip3 cells expressing T7-Rip3 and Flag-RasC, T7-Rip3 and Flag-RasCQ62L, or Flag-RasCQ62L alone. Immunoprecipitation (IP) was performed using anti-
T7 antibody, and samples were immunoblotted (IB) with anti-T7 or anti-Flag antibodies.
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8 × 107 cells/ml, and kept on ice before assay. 100 µl of cell suspension 
was mixed with equal volume of TM buffer (20 mM Tris, pH 8.0, and  
2 mM MgSO4) in the presence or absence of 40 µM GTP-S (Roche) and 
then immediately lysed through two layers of 5-µm filter membranes. Lysate 
samples were incubated on ice for 8–12 min before being stopped by the 
addition of SDS sample buffer. To test whether Ras proteins mediate the 
effects of GTP-S, 10 µg GST-RBD or an equal amount of GST purified from 
bacteria was added together with GTP-S.

To reconstitute PKB phosphorylation in vitro with lysates from wild-
type cells and piaA cells expressing Flag-RasCQ62L, 50 µl of cell suspen-
sion from each cell line was mixed together with 100 µl TM and 1 µl of  
60 mM ATP and then filter lysed. Reactions were incubated on ice for  
8–12 min and stopped by the addition of SDS sample buffer.

To make HSS, caffeine-treated cells were washed with PM twice,  
resuspended in glycerol lysis buffer (20 mM Tris, pH 8.0, 2 mM MgSO4, 
0.2 mM EGTA, 10% glycerol, and complete EDTA-free protease inhibitor 
[Roche]) at a density of 8 × 107 cells/ml, and filter lysed. Cell lysates were 
centrifuged at 53,000 rpm in a TLA55 rotor (Beckman Coulter) at 4°C for 
1 h, and the supernatant was collected. 100 µl of the supernatant was 
used in one reaction.

To prepare membrane fractions from piaA cells expressing Flag-
RasC or Flag-RasCQ62L, differentiated cells were resuspended in PM at a 
density of 8 × 107 cells/ml and filter lysed. Cell extracts were centrifuged 
at 16,000 g for 2 min. The membrane pellet was washed once with PM, 
resuspended with 100 µl PM, and used in one reaction.

To obtain Flag-PiaA immunocomplex used for experiments presented 
in Fig. 8 (B–E), Flag-PiaA was immunoprecipitated as follows: 20 µl anti-
Flag M2 affinity gel (Sigma-Aldrich) was incubated with 1.2 ml HSS at 4°C 
for 3 h, washed with glycerol lysis buffer for three times and a total of 
15 min, and then eluted with 100 µl of 500 ng/µl 3xFlag peptide (Sigma-
Aldrich) at 4°C for 30 min. 100 µl of the eluate was used in one reaction. 
For experiments illustrated in Fig. 8 A, 200 ng/µl 3xFlag peptide was used 
to elute the complex. For PP242 treatment, the Flag-PiaA eluate was incu-
bated with PP242 for 15 min on ice before 0.1 mM ATP and lysates from 
Flag-RasCQ62L/piaA cells were added. The reaction was continued on 
ice for another 12 min before being stopped by the addition of SDS 
sample buffer.

Coimmunoprecipitation assay
rip3 cell was cotransformed with constructs expressing T7-Rip3 and Flag-
RasC, or T7-Rip3 and Flag-RasCQ62L, or Flag-RasCQ62L only. Cells were dif-
ferentiated, washed twice with PM, and lysed with immunoprecipitation 
buffer (20 mM Tris, pH 8.0, 20 mM MgCl2, 0.2 mM EGTA, 10% glycerol, 
complete EDTA-free protease inhibitor, 2 mM Na3VO4, and 0.3% CHAPS) 
for 10 min on ice. Cell extracts were centrifuged at 16,000 g for 2 min. 
Supernatant fraction was collected and incubated with 3 µl anti-T7 anti-
body at 4°C for 3 h. The immunocomplex was recovered by protein G–
Sepharose beads (GE Healthcare) during a 1-h incubation at 4°C. Beads 
were washed four times with immunoprecipitation buffer, and proteins 
were eluted by boiling the beads in SDS sample buffer.

Micropipette assay and image acquisition
Differentiated cells were plated on coverslip chambers (NalgenNunc; 
LabTek) filled with DB and allowed to adhere to the surface for 15–20 min.  
A micropipette filled with 1 µM cAMP was placed into the field of view. 
Chemotaxis was recorded by time-lapse video using an inverted micro-
scope (CKX41; Olympus) with a 20× NA 0.4 objective lens. Images were 
captured with ImageJ software (National Institutes of Health). Motility 
speed was calculated as the total distance traveled by the cell divided by 
time. To calculate chemotactic index, the cosine of the angle between the 
direction of movement and the direction of chemoattractant gradient was 
determined for each frame. The values were weighted according to the 
length of the step and averaged. The distances between the start (d1) and 
the end (d2) point of the migration path to the needle were measured, and 
chemotactic motility was calculated as (d1  d2) divided by the time the 
cell travels from the start to the end point. Persistency was calculated as the 
shortest linear distance between the start point and end point of the migra-
tion path divided by the total distance traveled by the cell.

1 µM cAMP was used to stimulate the translocation of LimEcoil-RFP. 
Cells were observed with a spinning disk confocal microscope (UltraVIEW 
DM16000; PerkinElmer) using a 40× NA 1.25-0.75 oil immersion objec-
tive. Images were captured with a cooled 12-bit charge-coupled device 
camera (LSI) and the Slidebook 4.0 software (Intelligent Imaging Innova-
tions, Inc.) and processed using Photoshop 7.0 and Illustrator 10.0 (Adobe). 
All experiments were performed at RT.

gene for deletion by homologous recombination. Knockouts were screened 
by PCR and confirmed by Southern blotting. Flag-RasC was amplified by PCR  
using primers 5-AAATAAAAATGGATTATAAAGATGATGATGATAAAT-
CAAAATTATTAAAATTAG-3 and 5-TTACAATATAATACATCCCCT-3 from 
rasC cDNA plasmid. The resulting PCR fragment was cloned into the BglII 
site of pDM359 (Veltman et al., 2009) for doxycycline-inducible expression or 
the BglII site of pJK1 for constitutive expression. To create activated RasC, the 
conserved glycine at position 13 or glutamine at position 62 was mutated to 
valine or leucine, respectively, by quick change site-directed mutagenesis.

Immunoblotting
Differentiated cells were shaken at 200 rpm in DB with 5 mM caffeine for 
20 min, washed with PM buffer (5 mM Na2HPO4, 5 mM KH2PO4, and 2 mM 
MgSO4) twice, resuspended to 2 × 107 cells/ml in PM, and kept on ice be-
fore assay. Cells were stimulated with 1 µM cAMP, lysed in SDS sample buffer 
at various time points, and boiled for 5 min. Immunoblotting was performed 
as described previously (Kamimura et al., 2009). Antibodies recognizing 
specific phosphorylated sites were purchased from Cell Signaling Technology. 
Anti–phospho-PKB substrate antibody (rabbit monoclonal antibody) was 
used to detect the phosphorylation of the substrates of PKBA and PKBR1. 
Anti–phospho-PDK docking motif antibody (mouse monoclonal antibody) 
was used detect the phosphorylation of the HM of PKBR1. Anti–phospho-PKC 
(pan) antibody (rabbit monoclonal antibody) was used to detect the phos-
phorylation of the ALs of both PKBA and PKBR1. Monoclonal antibody from 
Sigma-Aldrich was used to detect the Flag tag. Anti–pan-Ras mouse mono-
clonal antibody from EMD was used to detect D. discoideum Ras proteins. 
Anti-T7 tag monoclonal antibody from EMD was used to detect the T7 tag.

In vitro PKB phosphorylation assay
For GTP-S–stimulated PKB phosphorylation, cells were pretreated with caf-
feine as described in the previous section, resuspended in PM at a density of 

Figure 9. Schematic diagram of RasC-mediated signaling pathways 
that control chemotaxis. The chemoattractant cAMP signals through the 
G protein–coupled receptor cAR1 to RasC, leading to TORC2-mediated 
activation of PKBR1 and PKBA. The activation of PKBA also depends on 
recruitment to PIP3. Together, the two PKBs phosphorylate a series of sub-
strates and play a critical role in ACA activation, actin polymerization, and 
chemotaxis. The graphs to the left schematically illustrate the kinetics of  
G protein  and  subunits dissociation, RasC activation, PKB phosphory-
lation, PKB substrate phosphorylation, and chemotactic responses. The red 
line shows the typical wild-type responses that are rapidly shut off during 
persistent stimulation. The green line shows the responses in cells in which 
the inhibitory signal indicated by () is bypassed by RasCQ62L.
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PH domain translocation assay
The assay was performed as described previously (Lilly and Devreotes, 
1995). In brief, differentiated cells were treated with caffeine and resus-
pended in PM at a density of 8 × 107 cells/ml. At specific time points after 
stimulation with 1 µM cAMP, 100-µl aliquots of cells were filter lysed. Cell 
lysates were immediately mixed with equal volumes of supernatant contain-
ing PHcrac-GFP. Reactions were incubated on ice for 30 s before being 
stopped by the addition of 1 ml ice-cold PM. Membrane fractions were col-
lected and blotted with anti-GFP antibody.

Actin polymerization assay
Cells were pretreated with 3 mM caffeine for 20 min, washed with PM, 
resuspended in PM plus 1 mM caffeine at a density of 2 × 107 cells/ml, 
and kept on ice before assay. Cells were warmed by shaking at RT for 
10 min and then stimulated with 1 µM cAMP. At specific time points after 
stimulation, aliquots of cells were lysed by the addition of equal volumes 
of cold 2× assay buffer (2% Triton X-100, 20 mM KCl, 20 mM EGTA,  
20 mM imidazole, and 0.1 mg/ml NaN3). Cell lysates were incubated at 
RT for 10 min with occasional agitation. The Triton-insoluble cytoskeletal 
fraction was collected by centrifugation at 8,000 g for 4 min, washed 
once with 1× assay buffer, dissolved in 2× SDS sample buffer, and sub-
jected to SDS-PAGE. The amount of actin was determined by densitometric 
analysis of scanned Coomassie-stained gels.

ACA assay
Cells were grown to 5 × 106 cells/ml in HL5 medium and were allowed 
to differentiate to the chemotaxis competent stage by resuspending them 
in DB and providing exogenous pulses of 75 nM cAMP for 5.5 h. The 
cAMP receptor-mediated activation of ACA was performed as previously 
described (Kriebel and Parent, 2009). In brief, differentiated cells were 
treated with 2 mM caffeine for 30 min, washed and resuspended in 
ice-cold PM buffer, and stimulated with 10 µM cAMP at RT, except that 
the basal activity was measured on ice. Cells were withdrawn at the 
indicated time points into the reaction mix containing -[32P]ATP diluted 
with unlabeled ATP to a final concentration of 100 nM. The reaction 
was allowed to proceed for 1 min and stopped with SDS/ATP, and the 
[32P]cAMP was purified by sequential Dowex AG 50W X-4 and alumina 
column chromatography.

Online supplemental material
Fig. S1 shows that RasC but not RasG is required for the activation of the 
PKB pathway. Fig. S2 shows that constitutive expression of activated forms 
of RasC in rasC cells results in prolonged activation of PKBR1 and defects 
in chemotaxis. Fig. S3 shows that PKBR1 and PKBA are required for ACA 
activation. Fig. S4 shows that RasC is activated in piaA cells. Videos 1 
and 2 show the translocation of LimEcoil-RFP in rasC D. discoideum cells 
induced to express Flag-RasC or -RasCQ62L. Videos 3–10 show different 
lines of D. discoideum cells migrating in a gradient of cAMP generated by 
a micropipette. Online supplemental material is available at http://www 
.jcb.org/cgi/content/full/jcb.201001129/DC1.
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