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Abstract

During the last decade, a consensus has emerged that the stochastic triggering of an excit-

able system drives pseudopod formation and subsequent migration of amoeboid cells. The

presence of chemoattractant stimuli alters the threshold for triggering this activity and can

bias the direction of migration. Though noise plays an important role in these behaviors,

mathematical models have typically ignored its origin and merely introduced it as an external

signal into a series of reaction-diffusion equations. Here we consider a more realistic

description based on a reaction-diffusion master equation formalism to implement these net-

works. In this scheme, noise arises naturally from a stochastic description of the various

reaction and diffusion terms. Working on a three-dimensional geometry in which separate

compartments are divided into a tetrahedral mesh, we implement a modular description of

the system, consisting of G-protein coupled receptor signaling (GPCR), a local excitation-

global inhibition mechanism (LEGI), and signal transduction excitable network (STEN). Our

models implement detailed biochemical descriptions whenever this information is available,

such as in the GPCR and G-protein interactions. In contrast, where the biochemical entities

are less certain, such as the LEGI mechanism, we consider various possible schemes and

highlight the differences between them. Our simulations show that even when the LEGI

mechanism displays perfect adaptation in terms of the mean level of proteins, the variance

shows a dose-dependence. This differs between the various models considered, suggesting

a possible means for determining experimentally among the various potential networks.

Overall, our simulations recreate temporal and spatial patterns observed experimentally in

both wild-type and perturbed cells, providing further evidence for the excitable system para-

digm. Moreover, because of the overall importance and ubiquity of the modules we con-

sider, including GPCR signaling and adaptation, our results will be of interest beyond the

field of directed migration.

Author summary

Though the term noise usually carries negative connotations, it can also contribute posi-

tively to the characteristic dynamics of a system. In biological systems, where noise arises
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from the stochastic interactions between molecules, its study is usually confined to genetic

regulatory systems in which copy numbers are small and fluctuations large. However,

noise can have important roles when the number of signaling molecules is large. The

extension of pseudopods and the subsequent motion of amoeboid cells arises from the

noise-induced trigger of an excitable system. Chemoattractant signals bias this triggering

thereby directing cell motion. To date, this paradigm has not been tested by mathematical

models that account accurately for the noise that arises in the corresponding reactions. In

this study, we employ a reaction-diffusion master equation approach to investigate the

effects of noise. Using a modular approach and a three-dimensional cell model with spe-

cific subdomains attributed to the cell membrane and cortex, we explore the spatiotempo-

ral dynamics of the system. Our simulations recreate many experimentally-observed cell

behaviors thereby supporting the biased-excitable network hypothesis.

Introduction

How cells sense and interpret external chemoattractant cues and use this information to direct

cell movement is one of the most fundamental processes of biology. Unicellular organisms rely

on this mechanism to seek nutrients and survive. In multicellular organisms, it is a fundamen-

tal process during embryonic development [1, 2] as well as responsible for the proper opera-

tion of the mammalian immune system [3, 4]. Perversely, it is through the development of

directed cell migration that cancer cells become metastatic [5–7].

Mathematical models have been fundamental in elucidating the mechanisms that cells use

to direct the cell migration [8–10]. There is a broad consensus that cells such as the social

amoeba Dictyostelium discoideum and mammalian neutrophils sense the chemoattractant gra-

dient through a local excitation, global inhibition (LEGI) mechanism based on an incoherent

feedforward loop motif that was originally proposed to explain perfect adaptation [11–13]. By

incorporating different diffusion properties on the signal components, the mechanism senses

static spatial gradients without movement [12, 13].

In response to a spatially uniform stimulus, cells display an initial transient response in

which Ras and downstream PI(3,4,5)P3 and F-actin activities increase and decrease several

times, before eventually returning close to the pre-stimulus basal states, resulting in “near-per-

fect” adaptation. Signaling motifs responsible for perfect adaptation fall into one of two broad

classes: a negative feedback (NFB) loop with a buffering node, or an incoherent feedforward

(IFF) loop with a proportioner node [14]. In Dictyostelium, experimental evidence favors the

presence of IFF-based adaptation [12, 15–17]. The LEGI mechanism, a form of IFF, assumes

the existence of a fast local excitor and a slow globally diffusive inhibitor. The productions of

the excitor and the inhibitor are independently driven by the receptor occupancy [13]. A local

response regulator, which is activated by the excitor and inhibited by the inhibitor, drives

downstream signals.

LEGI mechanisms explain gradient sensing but do not account for several aspects of the

chemotactic cells, including the ability to move in the absence of external cues. Excitable sys-

tems recreate many of the observed properties of randomly migrating cells [18–23] including

the stereotypic nature of pseudopods during migration, as well as the spatial pattern of activi-

ties exhibited by both signaling and cytoskeletal elements in cells [24, 25]. Recently, LEGI

mechanisms have been coupled to an excitable system to explain how a cell’s ability to migrate

randomly can be steered in the direction of the external gradient [17, 22]. When combined

with a memory-like ability to polarize the chemotactic machinery, these models account for
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nearly all the observed behavior of chemotaxing cells [22, 26]. Most mathematical models of

chemoattractant signaling have adopted a variant of the FitzHugh-Nagumo (FHN) model of

neuronal excitability [27, 28]. These models, however, suffer from limitations because of the

phenomenological aspect of the model. For example, using reaction terms in polynomial form

as in the FHN model does not permit direct biological interpretability. Moreover, system

states, which would typically represent concentrations, are not constrained to be nonnegative

[19–22, 29].

Though the LEGI mechanism successfully explains the temporal and spatial responses to

chemoattractant in Dictyostelium [15–17, 30], little attention has been paid to the effect of

noise on the LEGI mechanism. Moreover, in the excitable paradigm, the ability to generate

random protrusions, as seen in unstimulated migrating cells, relies on stochastic fluctuations

triggering the excitable system. A proper account of these fluctuations is vital, however, it is

their relative size that determines whether the external signal directs movement properly. In

practice, noise arises as an intrinsic feature of the stochastic nature of the biochemical reac-

tions and depends on the state of the dynamical system [31, 32]. To our knowledge, however,

all existing computational models use partial differential equations and generate these fluctua-

tions by injecting noise as an additional input into these differential equations.

To overcome the aforementioned limitations, here we present a new model of the biological

signaling mechanism that regulates motility. Specifically, to account for the noise accurately

we eschew the partial-differential equation approach and instead incorporate the reaction-dif-

fusion processes into the URDME (Unstructured Reaction Diffusion Master Equation) soft-

ware [33]. This methodology does not make a priori assumptions on the size of the stochastic

perturbations; instead, the fluctuations are inherent in the underlying chemical master equa-

tion. Hence, the noise is controlled by number of the molecules of the reacting species. More-

over, we consider a realistic geometry consisting of a three-dimensional cell with membrane

and cortex elements. Finally, we use detailed biochemical models of the receptor dynamics,

LEGI and excitable modules and verify the sufficiency of these three interconnected networks

in explaining the spatiotemporal dynamics of chemotactic signaling.

Methods

Stochastic simulations

The Unstructured Reaction Diffusion Master Equation (URDME) approach [33] adopted in

the present study uses the Next Sub-volume Method (NSM) [34], which is a variant of the

Next Reaction Method (NRM) [35]. The URDME approach is computationally efficient and

easily applicable to unstructured meshes allowing it to consider complex geometries [33, 36,

37]. In the URDME framework, the time when the next reaction/diffusion event takes place is

computed using Gillespie’s direct method [38]. Spatial heterogeneity is achieved by discretiz-

ing the simulation domain into tetrahedral voxels. For determining in which voxel an event

occurs, NRM uses an event queue. If the event is a chemical reaction, then only the values of

the respective species in that voxel are modified. Alternatively, if the event represents diffusion,

then values in both the “sending” and “receiving” voxels are updated. In this formulation, the

simulation time is proportional to the logarithm of the number of reactions [35]. Specific

examples of how to include different types of reactions in the URDME framework are given in

S1 File.

Overall system architecture

For the present study we have divided the signaling pathways that drive the observed excitable

dynamics in Dictyostelium cells into three signaling subsystems (Fig 1A): 1) The G-protein
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coupled receptor (GPCR) subsystem is responsible for sensing chemoattractants. 2) The recep-

tor occupancy information from GPCR is passed down to the Local Excitation and Global

Inhibition (LEGI) mechanism which is responsible for adaptation in the presence of a global

stimulus as well as interpreting directional cues when cells are in a chemoattractant gradient.

3) The Signal Transduction Excitable Network (STEN), accounts for the features of the excit-

able behavior, including all-or-nothing responses, refractory periods and wave propagation,

and provides a characteristic response both in the presence or absence of chemoattractant sig-

nals. We have excluded downstream networks that directly influence the actin dynamics. The

output of our system could readily be coupled to the cytoskeletal signaling network but that

would likely necessitate numerous additional entities, including elements with a large number

of molecules (e.g.,�108 molecules of actin [39]) leading to a presently unmanageable compu-

tational burden for these stochastic simulations.

Geometry

We used a stationary hemispherical structure of radius 5 μm to capture the general shape of

adherent amoeboid cells devoid of any cytoskeletal components (as if treated with Latrunculin)

(Fig 1B). Because most of the species known to be involved in generating the spatial patterns

are either membrane-bound, or in the cytoskeletal cortex, we focus on these areas of the cell.

We do not incorporate nodes for the cytosol but consider this a sink from which some mole-

cules, such as PKBA, a component of PKB�s, can shuttle to the membrane [40, 41]. We

assumed that the cortex is 200 nm thick, and discretized a shell of this thickness into nodes

resulting from an unstructured tetrahedral mesh. The allowable minimum and maximum dis-

tances between the nodes were set at 100 and 300 nm, respectively. Overall, this gave rise to

5,500 nodes and 16,469 tetrahedral elements with volume distribution 26.8 ± 4.6 × 10−4 μm3

(mean±std. dev.). Because a coarser mesh affects the smoothness of diffusion, a finer mesh

would be preferred, but this increases the simulation cost considerably and would become a

major constraining factor as the number of biochemical elements in the model grew (S1 Fig).

For this reason, we compromised by choosing a medium size mesh so that, in an element of

average size, a single molecule corresponds to a concentration of approximately 60 nM. The

nodal volumes obtained from the dual of the tetrahedral mesh have a leptokurtic distribution

with parameters: 80.1 ± 16.3 × 10−4 μm3 (mean±std. dev.). The membrane nodes are those

close to the surface (0–20 nm); the others are cortex nodes (Fig 1C). The volume distributions

of cortex and membrane nodes were similar, with means of 8.4 × 10−3 μm3 and 7.7 × 10−3

Fig 1. Model schematic and simulation domain. (A) Reaction scheme adopted in the present study involves a receptor module describing GPCR (G-Protein Coupled

Receptor) dynamics, a LEGI (Local Excitation and Global Inhibition) module that provides adaptation and directional sensing, and a STEN (Signal Transduction

Excitable Network) that describes the excitable behavior of the cell. (B) Isometric (left) and cross-sectional side view (right) of the hemispherical simulation domain of

radius 5 μm and thickness of 200 nm. The outer surface is the membrane and the interior of the shell is the cortex.(C) Frequency distribution of all the nodal volumes

(black), membrane nodes (red) and cortex nodes (gray).

https://doi.org/10.1371/journal.pcbi.1008803.g001
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μm3, respectively. The mean subtracted distributions failed to reject the null hypothesis using a

Mann-Whitney-Wilcoxon test, indicating that the two size distributions are not significantly

different. The distributions of membranes nodes at the basal and apical surfaces were also sim-

ilar, with mean volumes of 7.3 × 10−3 μm3 and 7.9 × 10−3 μm3, respectively.

Results

GPCR signaling module

The initiation of chemotaxis in Dictyostelium involves binding of chemoattractant molecules

(ligand) to surface-bound G-protein coupled receptor (GPCR) molecules. In the present

study, we focused on cAR1 as the major receptor for cAMP. The heterogeneous 3’,5’-cyclic

adenosine monophosphate (cAMP) binding in Dictyostelium has been modeled using three

states indicating different levels of affinities [42]. For simplicity, we ignored the sequential

binding dynamics and followed the classification of GPCRs on the basis of affinity only. The

three states of unoccupied GPCRs have high (H), low (L) and slow (S) binding affinity with

respect to extracellular cAMP [42]. The corresponding occupied receptor states are labeled H:

C, L:C and S:C, respectively. Interaction of cAR1 with cAMP also results in the desensitization

of receptors due to phosphorylation [43, 44]. Despite any notable loss in the binding sites, a 3–

5-fold decrease in the binding affinity of the low affinity class (L) has been reported [43]. This

motivated us to consider additional phosphorylated receptor states: PH, PL, and respective

occupied states: PH:C, PL:C which resulted due to interaction among receptors (H,L,H:C,L:C)

and inorganic phosphate, P. Our complete receptor model consists of 10 reacting species and

26 reactions in total (Fig 2A). The detailed reactions and parameter values in mesoscopic form

are listed in Table 1.

To study the system response to different levels of cAMP, we mapped the relationship

between the dose of the cAMP (in terms of the total number of molecules of cAMP experi-

enced by the cell) and receptor occupancy (R.O.) (Fig 2B). We considered three different

cAMP doses corresponding to low (4%), mid (50%) and high (100%, saturating dose) levels of

R.O. The respective profiles at the basal surface show little variation at the two cAMP concen-

tration extremes, but considerably more heterogeneity (skewness = 0.04) at the mid-point (Fig

2C and 2D). In this case, the individual nodes displayed an approximately normal distribution,

but some nodes had as few as 10% (n = 4) or as high as 85% R.O. (n = 2). With higher cAMP

concentrations, the distribution became more skewed (skewness = −1.77), but there was a

small number of nodes (n = 18) with as little as 90% R.O. (Fig 2D).

In the presence of cAMP, the free GPCR states get converted to the respective occupied

states, among which the occupied low affinity receptors (L:C) form the greater population

(S2(A) and S2(B) Fig). The phosphorylated states showed slower dynamics (t1/2 = 198 s) com-

pared to the unphosphorylated states (t1/2 = 10 s). The average Fano factor was 0.95 (S2(C)

Fig). Whereas the absolute value of the temporal fluctuations at individual nodes increased

with higher cAMP concentrations (Fig 2E), the relative values decreased when expressed in

terms of coefficient of variation (COV = 0.69 at 4% R.O., 0.19 at 100% R.O.). While observing

the global response of total occupied receptors in a cell (summed across all the nodes), the tem-

poral fluctuations become almost negligible (Fig 2F). Furthermore, we looked into the hetero-

geneity in terms of the mean occupied receptor states among nodes for a range of doses of

cAMP. We observed that the relative internodal noise in the system decreased with the

increasing dose of cAMP and eventually approached a Poisson-like distribution (average Fano

factor = 0.85) for the saturating dose of cAMP from the initial sub-Poissonian distribution

(S2(D) and S2(E) Fig).
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So far, we have studied the intrinsic noise of the system. In a population of cells, the number

of receptors and other signaling molecules differ from cell to cell. To study the effect of this

cell-to-cell heterogeneity, we varied reaction rates, diffusion constants and the total number of

receptors, following a Gaussian distribution with nominal values and standard deviations. In

terms of the parameters, we assumed homogeneity in the cell but heterogeneity across the

cells. All the nominal values and the standard deviations are listed in Table 1 with further

details in S1 File. In this combined study of intrinsic and extrinsic fluctuations, we only

observed small differences (std. dev.�2.5% at the saturating dose, and�10% during initial

decay phase following removal of stimulus, n = 10 simulations) indicating a high degree of

robustness (Fig 2G).

Lastly, because of the computational burden of dealing with the large number of states and

reactions, we considered the possibility that GPCR binding could be represented by a reduced-

Fig 2. GPCR signaling. (A) Detailed schematic of the different states of the G-protein coupled receptor (GPCR) and cAMP binding.

Unoccupied receptors exist in high (H) and low (L) affinities, and a third slow (S) binding state. Occupied receptors are denoted H:C, L:C and

S:C. Phosphorylated states are denoted by a superscript P. (B) Dose response curve. The circled numbers denote different concentration levels

of cAMP corresponding to (1) low (4%), (2) mid (50%) and (3) high (100%) levels of R.O. (C) Steady-state R.O. in response to different

concentrations of cAMP. (D) Distribution of nodes based on R.O. for mid (light red) and saturating (red) cAMP doses. (E,F) Temporal profile

of number of total occupied receptors (H:C+L:C+S:C+PH:C+PL:C) at a single random node (E) and in the cell (F) for low (black) and

saturating (red) doses of cAMP. (G) Temporal profile of total free (black) and occupied (red) receptors in a cell in response to application and

removal of the high dose of cAMP. The shaded regions denote the respective standard deviations (n = 10 independent simulations in which

the parameter values were varied according to the distributions from Table 1 to account the cell-to-cell variation.

https://doi.org/10.1371/journal.pcbi.1008803.g002
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order model that could capture the essential spatiotemporal dynamics as well as most of the

noise characteristics of the full model. To this end, we used a model consisting of one free (R)

and a single occupied (R:C) state (S2(F) Fig) and varied the parameters of the reduced model

so as to minimize the error between the temporal response of the full and reduced systems.

The responses matched closely with only small differences during the initial decay phase fol-

lowing the removal of the stimulus (S2(G) and S2(H) Fig). Importantly, the noise characteris-

tics were also similar over a wide range of cAMP doses; for example, at a saturating dose of

cAMP, the standard deviation of the full order was 4.58 molecules compared to 4.59 for the

Table 1. Parameters for G-protein-coupled receptor (GPCR) module with propensity and stoichiometry vectors. Parameter values for reaction no. 1–10 are from [42];

for reaction no. 11–26, the values were estimated to match the experimental observations from [43, 44]; for reaction no. 27–28, the values were obtained by minimizing the

difference between the responses of full- and reduced-order system. The diffusion constants for all the GPCRs are assumed to be 2.7 × 10−2 μm2s−1 [45]. The total number

of receptor molecules followed a Gaussian distribution with mean and standard deviation of 70,000 and 5,000 molecules, respectively.

No Reaction Propensity Stoichiometry Vector Parameter

cAMP H L S H:C L:C S:C PH PH:C PL PL:C P R RC Nom.Val. Std.Dev. Unit

1. H+cAMP!H:C kH[cAMP][H] −1 −1 0 0 +1 0 0 0 0 0 0 0 kH 7.5 3.0 [μM s]−1

2. H:C!H+cAMP k−H[H:C] +1 +1 0 0 −1 0 0 0 0 0 0 0 k−H 0.45 0.18 s−1

3. L+cAMP!L:C kL[cAMP][L] −1 0 −1 0 0 +1 0 0 0 0 0 0 kL 2.2 0.88 [μM s]−1

4. L:C!L+cAMP k−L[L:C] +1 0 +1 0 0 −1 0 0 0 0 0 0 k−L 1 0.4 s−1

5. S+cAMP!S:C kS[cAMP][S] −1 0 0 −1 0 0 +1 0 0 0 0 0 kS 4.0 1.6 [μM s]−1

6. S:C!S+cAMP k−S[S:C] +1 0 0 +1 0 0 −1 0 0 0 0 0 k−S 0.05 0.02 s−1

7. H!L kHL[H] 0 −1 +1 0 0 0 0 0 0 0 0 0 kHL 8.0 3.2 ×10−2s−1

8. L!H k−HL[L] 0 +1 −1 0 0 0 0 0 0 0 0 0 k−HL 5.36 2.14 ×10−2s−1

9. H:C!L:C kHLC[H:C] 0 0 0 0 −1 +1 0 0 0 0 0 0 kHLC 8.0 3.2 ×10−2s−1

10. L:C!H:C k−HLC[L:C] 0 0 0 0 +1 −1 0 0 0 0 0 0 k−HLC 7.1 2.8 ×10−3s−1

11. H:C+P!PH:C kHCP[H:C][P] 0 0 0 0 −1 0 0 0 +1 0 0 −1 kHCP 5.3 2.1 ×10−4[μM

s]−1

12. PH:C!H:C+P k−HCP[PH:C] 0 0 0 0 +1 0 0 0 −1 0 0 +1 k−HCP 8.0 2.3 ×10−4s−1

13. PH+cAMP!PH:

C

kPHC[PH]

[cAMP]

−1 0 0 0 0 0 0 −1 +1 0 0 0 kPHC 4 1.6 ×10−2[μM

s]−1

14. PH:C!PH

+cAMP

k−PHC[PH:C] +1 0 0 0 0 0 0 +1 −1 0 0 0 k−PHC 2.42 1.0 ×10−3s−1

15. H+P!PH kPH[H][P] 0 +1 0 0 0 0 0 +1 0 0 0 −1 kPH 5.3 2.1 ×10−4[μM

s]−1

16. PH!H+P k−PH[PH] 0 −1 0 0 0 0 0 −1 0 0 0 +1 k−PH 8.0 3.2 ×10−4s−1

17. L:C+P!PL:C kLCP[L:C][P] 0 0 0 0 0 −1 0 0 0 0 +1 −1 kLCP 5.3 2.1 ×10−4[μM

s]−1

18. PL:C!L:C+P k−LCP[PL:C] 0 0 0 0 0 +1 0 0 0 0 −1 +1 k−LCP 8.0 3.2 ×10−4s−1

19. PL+cAMP!PL:C kPLC[PL][cAMP] −1 0 0 0 0 0 0 0 0 −1 +1 0 kPLC 5 1.5 [μM s]−1

20. PL:C!PL+cAMP k−PLC[PL:C] +1 0 0 0 0 0 0 0 0 +1 −1 0 k−PLC 1.5 0.3 s−1

21. L+P!PL kPL[L][P] 0 0 −1 0 0 0 0 0 0 +1 0 −1 kPL 5.3 2.1 ×10−4[μM

s]−1

22. PL!L+P k−PL[PL] 0 0 +1 0 0 0 0 0 0 −1 0 +1 k−PL 8.0 3.2 ×10−4s−1

23. PH!PL kPHL[PH] 0 0 0 0 0 0 0 −1 0 +1 0 0 kPHL 4.3 1.7 ×10−4s−1

24. PL!PH k−PHL[PL] 0 0 0 0 0 0 0 +1 0 −1 0 0 k−PHL 2.9 1,2 ×10−4s−1

25. PH:C!PL:C kPHLC[PH:C] 0 0 0 0 0 0 0 0 −1 0 +1 0 kPHLC 4.3 1.7 ×10−4s−1

26. PL:C!PH:C k−PHLC[PL:C] 0 0 0 0 0 0 0 0 +1 0 −1 0 k−PHLC 3.8 1.5 ×10−5s−1

27. R+cAMP!R:C kRC[R][cAMP] −1 −1 +1 kRC 8.85 ×10−1[μM

s]−1

28. R:C!R+cAMP k−RC[R:C] +1 +1 −1 k−RC 5.24 ×10−1s−1

https://doi.org/10.1371/journal.pcbi.1008803.t001
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reduced-order model (S2(C) and S2(E) Fig). This finding suggests that there is little error in

using the more computationally efficient reduced-order model in lieu of the detailed one.

LEGI module

The occupied receptors: H:C, L:C, S:C, PH:C, PL:C (collectively referred to as RL) pass down

the receptor occupancy information to the immediate down-stream signaling network which,

follows the LEGI mechanism [13]. Though LEGI successfully explains the temporal and spatial

responses to chemoattractant in Dictyostelium [15–17, 30], little attention has been paid to the

effect of noise on the LEGI mechanism. Moreover, there are a number of possible ways of

implementing LEGI, several of which we considered. In Dictyostelium, chemoattractant signal-

ing depends on the presence of G-proteins. G-proteins form a heterotrimer, consisting of α
(we focused on Gα2, which mediates cAMP signaling downstream of the cAR1 receptor [46,

47], β and γ subunits. Whereas these subunits are together in an unoccupied receptor, the α2

and βγ subunits dissociate upon stimulation at which time the latter are free to signal to down-

stream elements. This dissociation is persistent [47]. The Gβγ works upstream of Ras and is

crucial in chemotaxis [48, 49]. The Ras response, as well as downstream signals, display prop-

erties of excitable systems, including a refractory period [24], an all-or-nothing threshold [50],

and wave propagation [51–54]. At the same time, near perfect adaptation is observed in the

activated Ras response [16]. This suggests that adaptation happens upstream of Ras and, as the

response of Gβγ is persistent during cAMP stimulation, we treated this as the excitation process

in the LEGI module (Fig 3A). The parameters for the Gβγ dynamics were chosen (Table 2) to

match experimentally measured half-times of dissociation (on application of a saturating stim-

ulus) and reassociation (on removal of stimulus) of the Gα2 and Gβγ subunits [17].

We simulated the system and looked at the dissociated subunits and observed a highly non-

linear relationship between the response curves of receptor occupancy and the dissociated G-

protein (S3(A) Fig). The fraction of dissociated G-proteins decreased as the total number of G-

proteins increased (S3(A) Fig); however, as a function of the maximal response, it was inde-

pendent of the total number of G-proteins reaching 50% dissociation at�23% R.O. (S3(B)

Fig), indicating the existence of “spare receptors” in the system [55]. Additionally, we observed

that fluctuations (mean coefficient of variation) in the G-protein response decreased with

higher total number of G-proteins (S3(C) Fig). We chose the total G-proteins to be three times

the total number of receptors as for the higher values there was no difference in the relative

fluctuation level.

Unlike the excitation process, inhibition is G-protein independent in Dictyostelium [17].

To account for this, we assumed an inhibitor existing in both active (I?) and inactive (I) forms.

The diffusion constants for the inhibitor states were assumed high (a number typical of cyto-

solic entities [54]) to satisfy LEGI requirements that the global inhibitor have higher diffusivity

than the local Gα2βγ and Gβγ. To account for a possible multistep translocation to and from the

membrane, we made the inhibitor dynamics slow compared to those of Gβγ.

The interaction of the excitor Gβγ and the activated inhibitor jointly regulate a response reg-

ulator, RR, whose action can be modeled using either a difference or a ratio scheme, depending

on how the activation and inhibition processes regulate it (Fig 3B and S3(D)–S3(F) Fig). In the

difference scheme, basal and Gβγ-dependent activation together with I?-mediated deactivation

of RR through an intermediate lead to a steady-state RR concentration that is an affine (linear

plus a constant) function of the difference between Gβγ and I? (S3(E) Fig and S1 File). An alter-

native realization, the ratio scheme, involves Gβγ-dependent activation and I?-dependent inac-

tivation of RR along with independent basal activation/inactivation and leads to a steady-state

of RR that is proportional to the ratio of affine functions of the Gβγ to I? (S3(F) Fig and S1 File).

PLOS COMPUTATIONAL BIOLOGY Three-dimensional stochastic simulation of chemoattractant-mediated excitability in cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008803 July 14, 2021 8 / 29

https://doi.org/10.1371/journal.pcbi.1008803


Fig 3. Response of the LEGI mechanism to global stimulation. (A) Output of receptor module, RL = H:C + L:C + S:

C + PH:C + PL:C, drives the LEGI module. LEGI scheme involves a local activator (Gβγ) and global inhibitor (I?). Their

interaction creates a response regulator (RR) which positively affects the conversion of RasGDP to RasGTP. (B) The

regulation of RR can be realized either through a Difference scheme (top) or through a Ratio scheme (bottom). Both

involve basal and Gβγ-dependent production of RR. Whereas inactivation is mediated by I? through an intermediate X

PLOS COMPUTATIONAL BIOLOGY Three-dimensional stochastic simulation of chemoattractant-mediated excitability in cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008803 July 14, 2021 9 / 29

https://doi.org/10.1371/journal.pcbi.1008803


As there are a number of potential biochemical elements that could serve as the response regu-

lator, we considered both schemes. We implemented these schemes explicitly, using the corre-

sponding reactions, as well as implicitly, using a quasi-steady-state approximation of the

reactions. By ignoring the transient dynamics, the implicit formulations served to reduce the

computational burden of explicitly simulating these systems (S1 File).

One of the possible limitations of the adaptive networks described above is the sensitivity of

the adaptation to noise, resulting in variances that do not adapt, but depend on the stimulus

level [56]. As a third alternative, we adopted the Antithetic Integral Feedback (AIF) model [57]

by making some of the terms local and global, and then compared its performance with the

two schemes described above (Fig 3B). Here, Gβγ and I? create intermediates that annihilate

each other. One intermediate activates RR which, in turn, catalyzes the production of the

other. The detailed reactions and parameter values of all the three LEGI schemes are listed in

Table 3.

Simulating the combined GPCR and LEGI modules

To analyze the adaptation characteristics of proposed LEGI networks, we applied spatially uni-

form increasing concentrations of cAMP starting from no stimulus, (0% R.O.; 0–2 min) rising

to a low dose (4% R.O.; 2–8 min) and finally reaching a saturating dose (100% R.O., 8–12

min). As expected, both Gβγ and I? rose with the latter showing a slower response (Fig 3D and

3E and S5(A) and S5(B) Fig). In all variants considered, the initial responses depended on the

stimulus level; i.e., the peak amplitude (RRpeak, red) increased and the peak time (Tpeak,

orange) decreased with %R.O. (Fig 3F). In all three networks, the mean nodal response regula-

tor activity returned to prestimulus levels (RRss, blue in Fig 3F) but the variance shows stimu-

lus level dependency.

Though the parameter values of the different schemes were chosen to ensure similar mean

level of steady-state characteristics (steady-state value, RRss and adaptation time, Tadaptation,

in the difference scheme, in the ratio scheme it depends on both basal and I?-dependent terms. (C) LEGI with

Antithetic Integral Feedback (LEGI-AIF). In this scheme, Gβγ and I? create intermediates (X and Y, respectively) that

annihilate each other. The RR is created by Y and catalyzes the production of X. (D) Temporal dynamics of

components of the different LEGI schemes. The top panel shows nodal average profiles of Gβγ (green) and I? (red) in

response to a staircase profile of cAMP stimulus: 0–2 min: 0% R.O.; 2–8 min: 4% R.O.; 8–12 min: 100% R.O. The

bottom panels show the corresponding RR profile for the different schemes. The shaded regions denote standard

deviations among all nodes from a single simulation. (E) Basal surface profile of Gβγ (green), I? (red) and RR (blue)

from different schemes at the time points indicated. (F) Effect of concentrations of cAMP (in terms of % R.O.) on peak

amplitude (red), steady-state amplitude (blue), peak time (orange) and adaptation time (green) of the nodal average

profile of RR for different schemes. The solid lines and the shaded regions show the respective mean and standard

deviations (std. dev. here is the measure of the inter-nodal variation).

https://doi.org/10.1371/journal.pcbi.1008803.g003

Table 2. Parameters for G-protein dynamics. Here, we varied the ratio of total number of G-protein (Gα2βγ+Gβγ) to the total number of receptors; for each case, the reac-

tion rate constants of G-protein dynamics were estimated to match the half times of dissociation (t1/2,diss.) and reassociation (t1/2,reass.) from [17]. In reaction no. 2, RL is

the total occupied receptors (H:C + L:C + S:C + PH:C + PL:C).

No. Reaction Propensity Parameter Ratio :
ntot;G‐Protein
ntot;GPCR

Unit

0.1 0.2 0.5 1 2 3 4 5

1. Gα2βγ!Gβγ + Gα2 kE0[Gα2βγ] kE0 7.56 6.11 4.36 3.63 2.91 2.18 2.02 1.77 ×10−7s−1

2. Ga2bg� !
RL Gbg þ Ga2

kE[Gα2βγ][RL] kE 2.8 2.3 1.6 1.3 1.1 0.81 0.75 0.66 × 10−2 [μM s]−1

3. Gα2+Gβγ!Gα2βγ k−E[Gα2][Gβγ] k−E 14.6 11.8 8.4 5.0 3.5 3.0 2.8 2.75 × 10−2 [μM s]−1

t1/2,diss. 3.21 3.16 3.05 3.19 3.14 3.29 3.12 3.00 s

t1/2,reass. 30.02 30.01 30.45 32.52 32.79 30.19 30.83 30.49 s

https://doi.org/10.1371/journal.pcbi.1008803.t002
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S4(A) Fig), we observed differences among the schemes. Across a single cell, the variance over

the node increased for the difference scheme, decreased slightly for the ratio scheme, and was

smallest and fairly constant for the AIF scheme (blue in Fig 3F). The adaptation times in all

three schemes decreased monotonically as a function of %R.O., in agreement with published

experimental data [16], with the AIF scheme showing the least sensitivity (green in Fig 3F).

Unlike the difference and ratio schemes, the temporal profile of the LEGI-AIF showed some

oscillatory behavior during the adaptation at high levels of R.O. The variance in the peak

amplitude of the initial response for the ratio scheme was higher than for the difference

scheme. The lower coefficient of variation in the peak response profile of the difference scheme

provides more certainty of response to change of stimulus than the ratio scheme. Upon

removal of the stimulus, the difference scheme returned to the basal level more quickly com-

pared to the ratio scheme (S5(C) and S5(D) Fig).

We next allowed for varying internal concentrations and parameter values so as to capture

cellular heterogeneity. We observed the steady-state characteristics (RRss, Tadaptation) were

more robust than peak characteristics (RRpeak, Tpeak, S4(B) and S4(C) Fig) to changes in the

parameter values. This was true for all the three schemes. For the rest of study, we used the

implicit difference scheme of LEGI to avoid unnecessary repetition.

We next simulated the response to a gradient generated by releasing chemoattractant from

a micropipette. To this end, we imposed a stationary 3D Gaussian profile centered around an

edge point at the basal plane and considered both the apical and basal (Fig 4A) and perimeter

responses (Fig 4B and S1 File). Following imposition of the gradient, free Gβγ rose quickly at

the front where %R.O. was highest; at the rear the rise was slower (Fig 4C). In contrast, the

inhibitor rose more slowly and was fairly uniform around the perimeter of the cell, owing to

the relatively high diffusion (Fig 4C and 4D). The resultant response regulator rose sharply at

the front and dropped below the basal level at the rear (Fig 4C and 4D). Note that the steady-

Table 3. Parameters for LEGI modules. RL is the total occupied receptors (H:C + L:C + S:C + PH:C + PL:C). The reactions no. 7–15 are for only AIF scheme of LEGI

mechanism. The nominal values for the diffusion constants are: DGa2bg
¼ DGbg

¼ DX ¼ DY ¼ 0:2, DI = DI� = 20, DRRAIF
¼ 0:1mm2s� 1. The standard deviations in the diffu-

sion constants were chosen to be 20% of the respective nominal values. Further details are in S1 File.

No. Reaction Propensity Stoichiometry Vector Parameter

Gα2βγ Gβγ I I� X Y RRAIF Nom.Val. Std.Dev. Unit

1. Gα2βγ! Gβγ+Gα2 kE0[Gα2βγ] −1 +1 0 0 0 0 0 kE0 2.18 0.87 ×10−7 s−1

2. Ga2bg� !
RL Gbg þ Ga2

kE[Gα2βγ][RL] −1 +1 0 0 0 0 0 kE 0.81 0.32 × 10−2 [μM s]−1

3. Gα2+Gβγ!Gα2βγ k−E[Gα2][Gβγ] +1 −1 0 0 0 0 0 k−E 3.0 1.2 × 10−2 [μM s]−1

4. I!I� kI0[I] 0 0 −1 +1 0 0 0 kI0 0.65 0.26 ×10−7 s−1

5. I� !RL I� kI [I][RL] 0 0 −1 +1 0 0 0 kI 0.24 0.07 × 10−2 [μM s]−1

6. I�!I k−I [I�][I�-1] 0 0 +1 −1 0 0 0 k−I 0.90 0.36 × 10−2 [μM s]−1

7. ⌀!X kX0 0 0 0 0 +1 0 0 kX0 25 10 ×104 μMs−1

8. ⌀� !
Gbg X kX [Gβγ] 0 0 0 0 +1 0 0 kX 2 0.8 ×102 s−1

9. X!⌀ k−X[X] 0 0 0 0 −1 0 0 k−X 1 0.4 s−1

10. X + Y!⌀ k−XY [X][Y] 0 0 0 0 −1 −1 0 k−XY 20 8 [μM s]−1

11. ⌀� !
RRAIF Y kY0[RRAIF] 0 0 0 0 0 +1 0 kY0 10 4 s−1

12. ⌀� !
I� Y kY [I�] 0 0 0 0 0 +1 0 kY 2 0.8 ×102 s−1

13. Y!⌀ k−Y [Y] 0 0 0 0 0 −1 0 k−Y 1 0.4 s−1

14. ⌀� !
X RRAIF

kRR[X] 0 0 0 0 0 0 +1 kRR 10 4 s−1

15. RRAIF!⌀ k−RR[RRAIF] 0 0 0 0 0 0 −1 k−RR 1 0.4 s−1

https://doi.org/10.1371/journal.pcbi.1008803.t003
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Fig 4. Steep gradient sensing by LEGI difference scheme. (A) Schematic showing the diameter at the bottom surface (red) and a semicircular arc on the

curved surface (blue) connecting front and back of the cell with respect to the needle position (light blue dot). (B) Circular cross sections of the

hemispherical domain at z = 1 (a) and z = 2 μm (b). The front (closest to needle) and back of the cell is marked as 0 and 180˚, respectively. (C) Temporal

profiles of Gβγ (green), I? (red) and RR (blue) at cell front (0˚, darker shade) and back (180˚, lighter shade). (D–G) Spatial response of the system for

receptor occupancy (R.O.), Gβγ, I? and response regulator (RR). The kymographs (D) are based on the maximal projection of the hemispherical domain

(nodes between a and b) of panel B. The white dashed line indicates the time instant when cAMP gradient was applied. Panel E shows the spatial profiles at
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state level of the response regulator at the front was lower than the peak, as the level of the

inhibitor increased, but still displayed levels above basal. To examine the role of diffusion in

these patterns, we varied the inhibitor diffusion over a wide range (S6 Fig). Increasing the ratio

of inhibitor-to-Gβγ diffusion resulted in greater differences in the response regulator between

front and back. The mean difference between RR molecules between front and back doubled

for a 10-fold difference in diffusion coefficients.

At steady state, the linear profiles of local entities such as R.O. and Gβγ displayed gradients

that were more diffused on the top surface than on the basal surface (Fig 4E–4G). In contrast,

the inhibitor profile was relatively flat along the length of the cell, though random variations

were apparent. The resultant response regulator profile showed a gradient and was higher/

lower at the front/rear relative to the basal level. We repeated the simulations for a shallower

gradient and observed similar behavior, with a smaller degree of localization and slower

response in RR (S7 Fig). Additionally, we considered a number of different profiles varying the

receptor occupancy at the back (from 12–57%) and front (80–100%). In all cases, the LEGI

mechanism was able to sense gradients (S8 Fig).

Signal transduction excitable network (STEN) module

Dictyostelium cells have two excitable systems that work in tandem: a fast cytoskeleton-based

network, and a slower signaling network that drives the cytoskeletal system [24, 25, 51]. As we

are modeling cells lacking an intact cytoskeleton, we focused on the latter. Our proposed

STEN consists of five species: RasGDP, RasGTP, activated and inactivated protein kinase B

substrates (PKB�s and PKBs, respectively), and membrane phosphatidylinositol bisphosphate

(PIP2), which represents contributions from both PI(3,4)P2 and PI(4,5)P2 (Fig 5A). To reduce

the simulation burden, we omitted inactivated protein kinase B substrates (PKBs) from explicit

modeling.

In our scheme, RasGTP acts as the activator of the excitable system and serves as a front

marker of the cell. Recent experiments have demonstrated that lowering PI(4,5)P2 results in

increased Ras activity [50]. Similarly, lowering PI(3,4)P2 increased Ras activity through the

regulation of RasGAP2 and RapGAP3 [59]. Thus, we incorporated the PIP2-mediated hydroly-

sis of RasGTP to RasGDP into the model. This closes a positive feedback loop that is formed

through mutual inhibition between RasGTP and PIP2.

A slower, negative feedback loop is achieved through the RasGTP-mediated activation of

PKBs. This activation is achieved partly by having PH-domain containing PKBA translocate to

the membrane to bind to PI(3,4,5)P3, as well as TorC2-mediated phosphorylation of PKBR1

[40, 41]. This negative feedback loop is closed as activated PKBs (PKB�s) negatively regulate

RasGTP. There are two proposed mechanisms of negative feedback: 1) controlling the localiza-

tion of the Sca1/RasGEF/PP2A complex on the plasma membrane through phosphorylation of

Sca1; 2) phosphorylation and activation of PI5K which increases PIP2 [41, 60]. As we do not

specifically model PI(3,4,5)P3, we implemented this loop with PKBs being activated directly by

RasGTP, with a slower time scale to account for the omitted intermediate steps (e.g., PI3K acti-

vation, PI(3,4,5)P3 formation and PKB translocation and subsequent phosphorylation) and

that some reactions involve cytosolic species, compared to the mutually inhibitory positive

feedback loop.

Finally, we coupled this excitable network to the LEGI in two ways. First, through an RR-

dependent term that converts RasGDP to RasGTP, consistent with the possibility that the RR

the basal and apical surfaces at t = 3 min. Panel G shows the spatial profiles along the lines marked in pane A. Lines denote mean and the shaded regions

standard deviations (n = 5 independent simulations with parameter fluctuations as in Fig 2G).

https://doi.org/10.1371/journal.pcbi.1008803.g004
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Fig 5. Response of STEN to global stimulus. (A) Schematic of STEN showing the entities: RasGTP, RasGDP, PIP2 PKBs, PKB�s and their interactions.

Green arrows denote positive feedback whereas, orange arrows complete the negative feedback on RasGTP. (B) Temporal profiles of RasGTP (green),

PIP2 (red) and PKB�s (blue) at a random node that has fired spontaneously. (C–E) Spatiotemporal profiles of RasGTP (green) and PIP2 (red) of the

membrane showing wave-traveling (C), splitting (D) and annihilation (E). (F) Response to a spatially uniform dose of cAMP. Shown are the global

RasGTP, PKB�s and PIP2 responses (left), and same at a single random node (center) and the spatiotemporal profile (RasGTP, PIP2) at the basal surface

of the cell (right). The yellow arrowheads denote wave initiation sites. Colors are as in panels B–E. The shaded region in the left panel is the standard

deviation as in Fig 4D (n = 10). The peaks of the RasGTP and PKB�s profiles correspond to approximately 165,000 and 275,000 molecules. PIP2 peaks at

approximately 1,000 molecules/μm2 similar to that reported in [58]. (G) Basal subtracted normalized RR (RR , left) and RasGTP (right) responses to

short (2 s, blue) and long (30 s, red) stimuli. The solid lines and the shaded regions are as in panel F (n = 10). (H) RasGTP response to the two short

pulses (2 s) of spatially uniform stimuli with variable delays. Left: temporal mean nodal profile of RasGTP (n = 10). Right: plot of normalized peak of the

second response to the first versus the delay between the stimuli.

https://doi.org/10.1371/journal.pcbi.1008803.g005
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is a RasGEF or activates a RasGEF. Second, we also included a term to account for the activa-

tion of Phospholipase C (PLC) by Gα2 which leads to PI(4,5)P2 hydrolysis [61]. Table 4 lists the

detailed reaction terms and parameter values.

Combining the GPCR, LEGI, and STEN modules

We first simulated our model in the absence of any stimulus. We observed several characteris-

tics of excitable behaviors (Fig 5B–5E), such as traveling waves which were annihilated on col-

lision [62] and occasionally split into smaller waves. When viewing a single node, RasGTP and

PIP2 showed mutually exclusive behavior, in which the number of molecules at any one time

of one species dominated the other. For example, when PIP2 dominated, there was approxi-

mated 40 molecules of PIP2 compared to approximately one molecule of RasGTP (Fig 5B,

t = 30 s). The transition to a state in which RasGTP dominated (�25 molecules of RasGTP vs.

�0–2 molecules of PIP2) was rapid. In contrast, the number of PKB�s molecules varied consid-

erably less, ranging from�40–60 with slow increases happening after the node transitions to a

high RasGTP state (Fig 5B, t = 60 s). When viewed across the surface of the cells, we observed

wave activity (Fig 5C and S9(A) and S9(B) Fig and S1 Video). The cell was typically in a back

state in which high PIP2 levels dominated. However, when stochastic perturbations led to a

spot of high RasGTP activity, a wave of activation swept across the cell, moving between the

basal and apical surfaces. This eventually extinguished and the cell returned to its basal back

state.

Interestingly, after the RasGTP wave went through a region, the subsequent PIP2 recovery

was actually higher than before the wave, indicating an overshoot of the basal level (c.f. the

PIP2 intensity between the first and last panels in Fig 5C and S9(A) Fig (bottom)). The elevated

PIP2 regions played an important role in the steering of waves. Whenever a traveling wave

encountered a region of supra-basal PIP2 on its path, it moved around this region which often

resulted in the splitting of the wave (Fig 5D and S2 Video). Generally, wave splits were rare

because of the small size of the cell relative to the wave. This is consistent with experimental

Table 4. Parameters for signal transduction excitable module. The nominal values for the diffusion constants are: DRasGDP = DRasGTP = DPIP2 = 0.05,

DPKB�s ¼ 0:4mm2s� 1. The standard deviations in the diffusion constants were chosen to be 20% of the respective nominal values. The peak values are: RasGTP = 165,000

molec; PKB�s = 275,000 molec; PIP2 = 1,000 molec/μm2 [58]. Further details are in S1 File.

No. Reaction Propensity Stoich. Vector Parameter

RasGDP RasGTP PIP2 PKB�s Nom.Val. Std.Dev. Unit

1. RasGTP!RasGDP a1[RasGTP] +1 −1 0 0 a1 0.73 0.07 ×s−1

2. RasGTP � !PKB
�s RasGDP a2[RasGTP][PKB�s] +1 −1 0 0 a2 58.3 5.8 [μM s]-1

3. RasGDP � !PIP2?RR RasGTP a30 þ a3½RR�
a2

4
½PIP2�½PIP2 � 1� þ 1

RasGDP½ �
−1 +1 0 0 a30 15 1.5 s−1

a3 50 5 [μM s]-1

a4 22 2.2 ×10−2 μM−1

4. RasGDP!RasGTP a5[RasGDP] −1 +1 0 0 a5 26 2.6 ×10−2 s−1

5. ⌀! PIP2 b1 0 0 + 1 0 b1 48.1 4.8 μMs−1

6. PIP2!⌀ b2[PIP2] 0 0 −1 0 b2 48.1 4.8 ×10−2 s−1

7. PIP2 � !RasGTP
⌀ b3[PIP2][RasGTP] 0 0 −1 0 b3 19.2 1.9 × 103 [μM s]−1

8. PIP2 � !
Ga2 ⌀ b4[PIP2][Gα2] 0 0 −1 0 b4 7.7 0.7 × 102 [μM s]−1

9. PKB�s! ⌀ðPKBsÞ c1[PKB�s] 0 0 0 −1 c1 27 2.7 ×10−2 s−1

10. ⌀ðPKBsÞ � !RasGTP PKB�s c2[nT,PKBs-PKB�s][RasGTP] 0 0 0 + 1 c2 3 0.3 × 10−6 [μM s]−1

https://doi.org/10.1371/journal.pcbi.1008803.t004
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findings which have prompted experimentalists studying waves to consider giant fused cells

[51, 53]. Consistent with properties of excitable waves, when two wave fronts met, they annihi-

lated (Fig 5E and S3 Video). The annihilation time for wave collisions depended on the time

scale and relative diffusivity of RasGTP and PKB�s.

Response to stimulation

We simulated the response of our model to a spatially uniform stimulation using saturating

dose of cAMP (100% R.O., Fig 5F and S4 Video). After an initial delay of 2–3 seconds, we

observed multiple wave initiations (arrowheads in Fig 5F) and wave spreading. The waves

eventually spanned the whole cell at which time (�8–9 s) total Ras activity peaked. The

activity died down as the RR level returned to the pre-stimulus condition. The experimentally

observed response of cells is quite similar following short or long pulses of chemoattractant

stimulation, consistent with the notion that the underlying signaling network is excitable [7,

24]. To test this in our model, we repeatedly applied short (2 s) and long (30 s) global stimuli

to models with varying parameter values and compared the respective RR and RasGTP

responses (Fig 5G). The response profiles were nearly indistinguishable, with both peaking

about 7–8 s after the application of the stimulus, followed by a return to the pre-stimulus level.

They only differed in the final phase in which the response to the short stimulus reached its

steady-state faster (�20 vs. 30 s). Interestingly, the RasGTP response was only noticeable after

�2 s at which time the short stimulus had already been removed. This is consistent with excit-

able systems which reach a point of no return following stimulation. When the stimulus

remained present beyond the time taken for the excitable system to return to its basal state

(> 60 s), we observed a smaller and more patchy second wave of activity (S9(C)–S9(F) Fig).

This second peak of the response is due to the partially adapted state of the LEGI module

which is due to the adaptation time being longer than the duration of a pulse from the excitable

system; it has been seen experimentally both with signaling [63] and cytoskeletal biosensors

[64].

Cells display refractory periods following stimulation during which further excitation fails

to trigger a response, or diminished in intensity [7, 24]. We applied a series of double pulses,

each of duration 2 s with variable delays (10–90 s) and compared the peak of the second

response to the first response (Fig 5H, left panel). For short delays (<10 s) there was no distinct

second response. However, as we increased the time delay, we observed an increase in the peak

amplitude of the second response. After a sufficiently long delay (80 s), the second peak almost

matched the first peak with a 50% recovery occurring at�50 s. (Fig 5H, right panel).

When stimulated by a gradient, cells display persistent high levels of activity at the side of

the cell facing the chemoattractant source. We simulated these experiments by introducing a

gradient of receptor occupancy across the cell. RasGTP showed a localized persistent patch of

high activity facing the side with highest receptor occupancy (Fig 6A and S5 Video). We also

simulated two experiments in which the spatial gradient was combined with a temporal stimu-

lus. In the first, we introduced a gradient and waited until the cell displayed a spatial response;

we then removed it for a variable time, before finally reintroducing it [65]. The crescent disap-

peared following removal of the stimulus but did not return to its full strength until the delay

was�60 s (Fig 6B and S6 Video), matching our previous observations in the double pulse

experiment. In the second simulation, we applied a large global stimulus following the estab-

lishment of a crescent in response to a gradient, and then removed all cAMP. In this case, the

global stimulus elicited a response everywhere (Fig 6C and S7 Video). These simulations show

the complex interactions of spatial and temporal components of coupled LEGI and STEN

systems.
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Effect of lowering threshold

Recent experiments in which the activity and motility of the cell were altered suggest that these

came about through changes in the threshold of the excitable signaling system. Our model

allows to test some of these perturbations. We first considered lowering PIP2 levels by adding

an extra degradation term, so as to recreate experiments in which the phosphatase Inp54p is

brought synthetically to the cell membrane [7, 51]. In this case, we saw elevated levels of activ-

ity and the cell commenced periodic whole-cell increases in activity similar to what have been

observed experimentally (Fig 7A). Similar, though less acute increases in activity were seen

in simulations in which PKB�s levels in the cell were lowered through a reduction in the

RasGTP-mediated activation rate (Fig 7B). In this case, bursts of wave initiations were

observed, but the resulting waves did not cover the whole cell surface.

Experiments have also demonstrated that mechanical contacts can trigger excitable behav-

ior [66–68]. Finally, we considered the possibility that the threshold was differentially regu-

lated by mechanical contact with the substrate, with a lower threshold at the basal surface than

at the apical surface. To take this into account, we assumed that the PKBs-mediated inhibition

Fig 6. Response to combinations of temporal and gradient stimuli. (A–C) Shown are the temporal profiles of RasGTP (green), PIP2 (red), PKBs�(blue),

Gα2 (teal), Gβγ(orange) and basal subtracted normalized RR (RR, cyan) at single nodes at the front and back of the cell. The kymographs (right) show

RasGTP (green) and PIP2 (red). Solid white line denotes when the gradient was applied, and the dashed line shows the needle position (front). Whereas

Panel A shows the response to a single gradient, B and C show the response to two gradient stimuli with a delay of 60 s (B) and to a gradient stimulation

followed by a global one (C).

https://doi.org/10.1371/journal.pcbi.1008803.g006
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of RasGTP was different between the basal and apical surfaces, with lower inhibition at the for-

mer (Fig 7C). In these simulations, we observed frequent wave initiations at the basal surface,

but these waves were quickly extinguished when they reached the apical surface (Fig 7D). We

rarely saw any de novo waves at the apical surface, and when they did appear, they did not

spread like the basal counterpart, and were extinguished rapidly (Fig 7E).

Discussion

Mathematical models have been a popular means of understanding how cells move in response

to chemoattractant stimuli. These models have taken a modular view of the overall signaling

network, breaking the overall system down into simpler functional blocks [69]. In doing so,

most models have focused on a specific set of experimental observations, such as receptor-

ligand interactions [42], adaptation [13, 16, 70], amplification [71], wave propagation [72–75],

excitability [25, 54, 76], or polarity [77–79], by concentrating on a specific functional block

sometimes ignoring its connection to the overall network. Part of this problem is a lack of

experimental data as most experimental papers focus on specific aspects of the chemotactic

behavior. Here, we have proposed an integrated model that takes the receptor-ligand binding

to PKBs, which have been shown to be a link to the cytoskeletal network. Where the experi-

ments do not offer single out a unique alternative, we have presented various possibilities and

simulated scenarios that could be used to distinguish among them, for example, we presented

different schemes of LEGI.

Because of the importance of noise-induced transitions in triggering the signal transduction

excitable network, thereby allowing unstimulated cells to move randomly, our modeling

Fig 7. Effect of threshold on STEN dynamics. (A,B) The kymographs show the effect of lowering the STEN threshold by inhibiting PIP2(A) and PKB�s

(B) as denoted in the schematics. The white lines indicate the time at which the respective species were lowered. (C) Schematic for incorporating the

differential threshold between top and bottom surface of the cell through altering the PKB�s mediated inhibition on RasGTP. (D) Increased threshold

restricts the wave activities at the basal surface and the waves were not allowed to travel to the apical surface. (E) Higher threshold on the apical surface

made small waves with fewer number of wave initiations.

https://doi.org/10.1371/journal.pcbi.1008803.g007
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approach has emphasized the role of noise. While the role of stochastic fluctuations in pattern-

ing cellular responses is now firmly appreciated, most of these studies consider molecules and

species that exist in relatively small numbers [31, 32]. As our simulations here demonstrate,

even in signaling systems that consist of biochemical species with high copy numbers, noise

can play an important role in regulating cell physiology.

There are a number of approaches for the stochastic simulation of biological reactions [80,

81]. The chemical Langevin equation (CLE) is one of the most widely used as it is easy to

obtain from the corresponding deterministic ODE model. However, there are some limita-

tions. The moments of CLE and those of the Chemical Fokker-Planck Equation (CFPE) are

only equivalent for unimolecular reaction systems [82] but are not the same for highly nonlin-

ear systems like those considered here [83]. Furthermore, the Gaussian noise approximation

inherent in the CLE does not restrict the values of the states to be non-negative which can lead

to the physically implausible results [84, 85]. This problem becomes more acute when dealing

with low copy numbers. There are simulation methods developed to avoid the limitations of

CLE, but most often they are found to introduce some additional errors [86]. In presence of

diffusion, the stochastic ordinary differential equations of the CLE framework become partial

differential equations (PDEs). Solving these stochastic PDEs, particularly on unstructured

meshes is difficult.

The URDME approach used here has several advantages over the stochastic PDE approach.

The stochastic framework that we used to simulate our model does not require an artificial

injection of noise. Instead, noise is a natural consequence of the stochastic description of the

reaction-diffusion equations. Moreover, highly complex geometries can be also be considered.

Nevertheless, there are some drawbacks. For example, quasi-steady-state assumptions that are

usually made (e.g. reaction 3 in Table 4) can introduce errors in stochastic simulations even in

cases when the approximation would be appropriate in a deterministic setting [87, 88]. The

URDME approach is also computationally expensive, particularly as the copy numbers of the

species increases. We should point out that other approaches exist all with their advantages

and disadvantages; see, for example, the description in [89, 90].

In this stochastic setting, the LEGI mechanism adapts perfectly as in the deterministic set-

ting, as long as we focus on the mean level of activity (Fig 3D and S5(A) and S5(B) Fig). How-

ever, we showed that the variance in the response increases as a function of the stimulus

strength (Fig 3F) and that the size of this increase depends on the particular way that the LEGI

is implemented. The increase in the variance observed could account for chemokinesis, the

increased speed of random migration seen following a uniform chemokine stimulus in neutro-

phils [91]. Moreover, because the different implementations of the LEGI mechanism have dis-

tinctive noise patterns, our results suggest a way of elucidating the precise nature of the

adaptation mechanism experimentally.

Our models define the essential characteristics of the LEGI inhibitor and facilitate its identi-

fication. This has been difficult as there are inhibitors in each of the modules. For example,

STEN possesses an inhibitor that accounts for fast shutoff of several biosensors (e.g. RBD).

This inhibition is mediated by PKBs [51, 92]. However, we have shown experimentally that

this STEN-inhibition is separate from the LEGI inhibitor [17]. There is also inhibition that

contributes to the polarization of cells and comes from the cytoskeleton [51] which we did not

model here. We and others [93–95] have suggested that this may be related to mechanical

properties of the cell. However, while both these processes provide inhibition, they are not the

I that we propose in this paper, which is specific to the LEGI mechanism. Importantly, this

LEGI inhibitor would be easy to miss by solely looking at cell migration, as cells lacking it can

chemotax, albeit it with lower efficiency than cells with it [22]. In fact, certain cells like fibro-

blasts do not have robust adaptation, but can chemotax though they respond only to a narrow
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range of chemoattractant concentrations [96]. Nevertheless, there are a several facts that we

can state about the inhibitor we seek. First, experimental data of Gβγ-null cells in presence of

cAMP substantiates the existence of an inhibitor in LEGI. In Gβγ-null cells, basal activity (PH

or LimE) decreases over one or two minutes and remains down as long as the stimulus is pres-

ent [17]. On removal of the stimulus, the activity returns within one or two minutes. This

demonstrates that there is a cAMP-mediated, but Gβγ-independent persistent inhibition (con-

sistent with the role that we assign to I� in this paper). We think that this is the best assay to

identify the inhibitor. One other aspect of this inhibitor is that it is not a feedback inhibitor.

Comparing model predictions of feedback and feedforward inhibition with experiments in

which multiple stimuli are applied in series [17] demonstrated that the inhibition does not use

feedback. A similar conclusion was also reached by considering the response to multiple che-

moattractant doses [16].

The biased-excitable network hypothesis suggests that chemoattractant stimulation leads to

a signal that lowers the threshold of activation of the STEN, and various models and experi-

ments support this view. However, how cells display a persistent crescent of front-markers

towards the source of a chemoattractant gradient remains an open question [97]. Simulations

of cells stimulated by gradients of chemoattractant show that the RR activity remains high at

the cell front and is suppressed elsewhere. One would expect that the resultant spatially local-

ized lowered threshold would trigger activity that would travel away from their point of origin.

Further activity would be possible, after the delay imposed by the refractory period. To explain

this, we modified the STEN dynamics such that, following stimulation, the system undergoes

an excitable-to-bistable transition (S9(G) and S9(H) Fig). In this case, a persistent, elevated

level of RR leads to a new “high” state of activity in the STEN, and persistent crescents were

observed. Though our implementation is similar to the wave pinning scheme used to explain

persistent polarization [98], it differs due to the fact that our system is only in the bistable

region in the presence of a persistent high stimulus.

Our model recreates most of the observed responses, including adaptation to persistent

global stimuli (Fig 5C–5G), presence of secondary peaks (S9(C)–S9(F) Fig, [99]), spatially

localized responses to gradients (Fig 5H–5I) along with the typical excitable behaviors such as

wave annihilation and refractory period. Moreover, our simulations show the power of having

an excitable system at the heart of the chemotactic signaling system. This threshold becomes

the most important parameter shaping the cellular response, dictating overall activity and

eventually, migratory modes [50]. Increased number of wave initiations as well as more wave

spreading is often associated with lowering of the threshold, whereas increase in the threshold

corresponds to opposite effect. The threshold in the chemotactic signaling network can be

altered in several ways and not all the alterations have the same effect on the system behavior.

Theoretically weakening all the inhibitory pathways or strengthening the catalytic pathways

acting on RasGTP can result in lowering of the threshold. Experimentally, several pharmaco-

logical/genetic perturbations have been used to study this effect of alteration in Dictyostelium
cells [50, 51, 100]. Recent publications suggested of possible existence of a number of mechani-

cal feedbacks on the leading edge protrusion [66, 101] and hence on the system threshold. Cao

et al. reported that the basal surface waves are mostly restricted at the bottom surface unless

the threshold of the system is lowered [67]. In that case, on reaching the bottom boundary the

basal surface waves starts traveling upwards long the apical surface.

In our study, we only have considered the mechanical input to the signaling network

through mechanical contacts, as suggested in [67]. Others factors, like cell geometry, mem-

brane curvature and cortical tension are also likely to influence signaling waves. In particular,

wave pinning could be caused by the localization of signaling molecules in cell structures that

represent significantly different surface-to-volume characteristics, like filopodia, dendritic
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spines, and primary cillia [102]. The resultant changes in cortical tension could also affect

polarization in cells [37, 94, 95]. Change in the membrane curvature also recruit curvature-

sensing proteins such as Bar-domain proteins which are known to interact with the signaling

network at various levels [103, 104]. In this present study, we did not include any cytoskeletal

proteins. Moreover, our solution domain is fixed and of regular geometry; we leave these

research avenues for the future study. We note that the URDME approach was recently com-

bined with a moving boundary framework to describe yeast polarization [105].

Finally, while our study has centered on chemoattractant signaling, we note that various

components, such as GPCR signaling, the presence of feedforward adaptive mechanisms, and

biochemical excitability are concepts that extend well beyond the realm of cell migration. For

example, a recent report suggests that stochastic effects may play an important role in rhodop-

sin signaling [106]. Thus, our study provides a means for analyzing the effect of noise in these

systems and could help to understand more complex interactions in these other settings.

Supporting information

S1 Fig. Effect of mesh refinement. (A) Total number of nodes (in logarithmic scale) for differ-

ent values of Hmax (maximum allowable distance between nodes). Hmin (minimum allowable

distance between nodes) was chosen to be 1/3 of the respective Hmax value. The red dot shows

the mesh size adopted for the present study whereas the gray dots are used for the comparison

in panel (C). (B) Simulation time (in logarithmic scale) for different values of Hmax corre-

sponds to a one second simulation of a diffusion process involving a single entity. Colors are

as in (A). (C) Comparison of the simulation output (basal surface profile) of a diffusion process

involving single entity at t = 1 s using fine, medium and coarse meshes as indicated by the

Hmax values. (D) Simulation time (in logarithmic scale) for different values of Hmax corre-

sponding to a one second simulation of GPCR and LEGI modules combined, in the absence of

cAMP. Colors are same as in (A).

(EPS)

S2 Fig. Temporal response of different full- and reduced-order receptor states. (A) Tempo-

ral responses of free (H,L,S), occupied (H:C,L:C,S:C), free phosphorylated (PH,PL) and occu-

pied phosphorylated (PH:C,PL:C) states of the receptors, in the absence and presence of a

saturating dose of cAMP. The gray boxes denote the time segments used to compute steady-

state concentration of different entities in (B). (B) Relative steady-state amount of different

receptor states in absence (top) and presence (bottom) of cAMP. (C) Mean Fano factor of the

temporal fluctuations among nodes for full-(blue solid) and reduced-order (red dashed) mod-

ules in response to varying cAMP levels (% R.O.). (D) Plot of total number of occupied recep-

tors at nodes. Solid line and shaded region show the mean and the standard deviation

respectively. (E) Comparison between internode noise characteristics of full- (solid) and

reduced-order (dashed) modules in terms of the coefficient of variation (blue) and Fano factor

(red). (F) Schematic of a two-state reduced order model of receptors containing single unoccu-

pied (R) and occupied (R:C) states. (G,H) Comparison between global responses of full- (blue

solid) and reduced-order (red dashed) receptor modules in presence and absence of cAMP.

The region where the two responses differ is denoted by the gray box in (G), which is zoomed

into in (H).

(EPS)

S3 Fig. G-Protein response and LEGI signaling. (A) Dissociated G-protein response (%) to

varying degree of receptor occupancy (% R.O.) with different total number of G-protein mole-

cules (represented by different colors and denoted as a ratio to the total receptors molecules).
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(B) G-protein responses of (A) normalized to respective maximum values. The inset shows a

zoomed-in version of a smaller section of the plot. Colors are same as in (A). (C) Coefficient of

variation as a function of %R.O. Colors are same as in (A). (D) Schematic of implicit LEGI

mechanisms. (E,F) Comparison between implicit (left) and explicit (right) schemes of differ-

ence (C) and ratio (bottom) mechanism. Whereas the explicit mechanism uses detailed reac-

tions involving Gβγ, I� and RR, the implicit schemes use the steady-state expression of RR

directly in the model ignoring the transient dynamics. (G) Effect of concentrations of cAMP

(in terms of % R.O.) on steady-state amplitude (blue), peak amplitude (red), adaptation time

(green) and peak time (orange) of the nodal average profile of RR in the ratio mechanism for

different basal activation/inactivation rate. The solid lines and the shaded regions show the

respective mean and standard deviations (n = 10 independent simulations in which the param-

eter values were varied according to the distributions of Table 3).

(EPS)

S4 Fig. Comparison among noise levels in LEGI schemes. (A) Effect of concentrations of

cAMP (in terms of % R.O.) on steady-state amplitude (top panel; blue solid: difference, light

blue dashed: ratio), peak amplitude (top panel; red solid: difference, magenta dashed: ratio),

coefficient of variation (COV) of steady-state (middle panel; blue solid: difference, light blue

dashed: ratio) and peak amplitude (middle panel; red solid: difference, magenta dashed: ratio),

adaptation time (bottom panel; green solid: difference, light green dashed: ratio) and peak

time (bottom panel; orange solid: difference, orange dashed: ratio) of the nodal average profile

of RR. Nominal values of the parameters were used. (B,C) Effect of parameter fluctuations on

the profiles in (A) where parameters were varied according to the distributions of Table 3. The

solid/dashed lines and the shaded regions show the respective mean and standard deviations

(n = 10). The colors are same as in (A).

(EPS)

S5 Fig. Temporal response of LEGI mechanisms. (A,B) Temporal nodal profiles of

Gβγ(green), I? (red) and RR (blue) in response to a staircase profile of cAMP for the difference

(A) and ratio (B) mechanisms. (C,D) Temporal average (C) and individual (D) nodal profiles

of Gβγ (green), I? (red) and RR (blue) in response to the application and withdrawal of stimu-

lus for difference (center) and ratio (bottom) mechanisms. The shaded regions in (C) denote

standard deviations among all nodes from a single simulation.

(EPS)

S6 Fig. Effect of diffusion of LEGI inhibitor during gradient stimulation. (A,B,C) Temporal

difference (between front and back of the cell) profiles of Gβγ (A), I? (B) and response regulator

(C, scaled) for different relative diffusive strengths of LEGI inhibitor, I?. The gray boxes denote

the time segments used to generate the average values of the individual profiles for (D). (D)

Plot showing steady-state temporal average values of the difference profiles Gβγ (green), I?

(red) and response regulator (blue) for different relative diffusive strengths of I? (in logarith-

mic scale). Mean±SEM is shown (n = 5 independent simulations in which the parameter val-

ues were varied according to the distributions of Table 3).

(EPS)

S7 Fig. Shallow gradient sensing by LEGI difference scheme. (A) Schematic showing the

diameter at the bottom surface (red) and a semicircular arc on the curved surface (blue) con-

necting front and back of the cell with respect to the needle position (light blue dot). (B) Circu-

lar cross sections of the hemispherical domain at z = 1 (a) and z = 2 μm (b). The front (closest to

needle) and back of the cell is marked as 0 and 180˚, respectively. (C) Temporal profile of Gβγ

(green), I? (red) and RR (blue) at cell front (0˚, darker shade) and back (180˚, lighter shade).
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(D-G) Spatial response of the system for receptor occupancy (R.O.), Gβγ, I? and response regula-

tor (RR). The kymographs (D) are based on the maximal projection of the hemispherical

domain (nodes between a and b) of panel B. The white dashed line indicates the time instant

when cAMP gradient was applied. Panel E shows the spatial profiles at the basal and apical sur-

faces at t = 3 min. Panel G shows the spatial profiles along the lines marked in panel A. Lines

denote mean and the shaded regions standard deviations (n = 5 independent simulations in

which the parameter values were varied according to the distributions of Table 3).

(EPS)

S8 Fig. Gradient sensing by LEGI difference scheme for varying receptor occupancy at the

front and the back. (A) Box plot showing the steady-state temporal distribution of the recep-

tor occupancy at the front (0˚, black) and the back (180˚, gray) of the cell. (B,C) Temporal pro-

file of Gβγ (green), I? (red) and RR (blue) at cell front (0˚, darker shade) and back (180˚, lighter

shade). The solid lines and the shaded regions show the respective mean and standard devia-

tions (n = 10 independent simulations in which the parameter values were allowed to vary

according to the distributions of Table 3). (D) Pre-(cyan) and post-stimulus (blue) profiles of

RR. The profiles are obtained by temporal averaging over a span of 5 s as shown by the rectan-

gular boxes of respective colors in (C). These simulations used nominal parameter values in

the LEGI difference model.

(EPS)

S9 Fig. STEN dynamics. (A) Spatiotemporal profiles of RasGTP-PKB�s (green-blue, top) and

PIP2-PKB�s (red-blue, bottom) on the basal surface showing wave-traveling. The regions

bounded by white dashed lines show the membrane regions with high RasGTP. (B) The

Color-coded overlays show the progression of waves as a function of time and computation of

the wave speed. (C) The nodal responses of RasGTP (green), PIP2 (red) and PKB�s (blue) at

three random membrane nodes in presence of a global cAMP stimulus. (D) Basal surface pro-

file of RasGTP (green) and PIP2 (red) in presence of a global stimulus at the time points indi-

cated. (E,F) Normalized global response of RasGTP (D) and the corresponding kymograph in

response to a sustained, spatially uniform cAMP dose. (G) Illustration showing how an excit-

able-to-bistable transition could occur. Shown are hypothetical nullclines for RasGTP (green)

and PKB�s (blue) for a deterministic, two-state model for the excitable system. The darker and

the lighter green shade represent the corresponding RasGTP nullcline in the excitable and bis-

table regimes, respectively. (H) Illustration showing the effect of a gradient stimulus. The

dashed line represents the RasGTP-nullcline in the absence of a stimulus. The darker and the

lighter green shade represent the RasGTP nullclines at the front and back of the cell, respec-

tively, when subjected to cAMP gradient. The scale bars in (A,B,D) represents 2 μm.

(EPS)

S1 File. Supplementary methods.

(PDF)

S2 File. MATLAB implementation. Matlab scripts used for simulating the various models.

(ZIP)

S1 Video. Wave traveling. Video showing various views of the wave traveling. Corresponds to

Fig 5C.

(MP4)

S2 Video. Wave splitting. Video showing various views of the wave splitting. Corresponds to

Fig 5D.

(MP4)
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S3 Video. Wave annihilation. Video showing various views of the wave annihilation. Corre-

sponds to Fig 5E.

(MP4)

S4 Video. Global stimulus. Video showing various views of the response to a global chemoat-

tractant stimulus. Corresponds to Fig 5F.

(MP4)

S5 Video. Gradient stimulus. Video showing various views of the response to a gradient che-

moattractant stimulus. Corresponds to Fig 6A.

(MP4)

S6 Video. Response to a successive application of gradient stimulii. Corresponds to Fig 6B.

(MP4)

S7 Video. Response to a gradient stimulation followed by a global stimulation. Corre-

sponds to Fig 6C.

(MP4)
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