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Wave patterns organize cellular protrusions and
control cortical dynamics
Yuchuan Miao1,2,† , Sayak Bhattacharya3,† , Tatsat Banerjee2,4, Bedri Abubaker-Sharif2, Yu Long2,

Takanari Inoue2, Pablo A Iglesias2,3,* & Peter N Devreotes2,**

Abstract

Cellular protrusions are typically considered as distinct structures
associated with specific regulators. However, we found that these
regulators coordinately localize as propagating cortical waves,
suggesting a common underlying mechanism. These molecular events
fell into two excitable networks, the signal transduction network
STEN and the cytoskeletal network CEN with different wave
substructures. Computational studies using a coupled-network model
reproduced these features and showed that the morphology and
kinetics of the waves depended on strengths of feedback loops.
Chemically induced dimerization at multiple nodes produced distinct,
coordinated alterations in patterns of other network components.
Taken together, these studies indicate: STEN positive feedback is
mediated by mutual inhibition between Ras/Rap and PIP2, while
negative feedback depends on delayed PKB activation; PKBs link STEN
to CEN; CEN includes positive feedback between Rac and F-actin, and
exerts fast positive and slow negative feedbacks to STEN. The alter-
ations produced protrusions resembling filopodia, ruffles, pseudopo-
dia, or lamellipodia, suggesting that these structures arise from a
common regulatory mechanism and that the overall state of the
STEN-CEN system determines cellular morphology.
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Introduction

Though there has been great interest since Alan Turing’s research

(Turing, 1952) in understanding the molecular basis for generating

patterns in biological organisms, it is only recently that wave

patterns in individual cells and their effect on cellular morphology

and function have been considered. Waves of cytoskeletal and

signaling events have been observed at the cortex of various cell

types including Dictyostelium (Vicker, 2002; Bretschneider et al,

2009; Arai et al, 2010), neutrophils (Weiner et al, 2007), fibroblasts

(Case & Waterman, 2011), Xenopus eggs (Bement et al, 2015), mast

cells (Wu et al, 2013; Xiong et al, 2016), developing neurons

(Winans et al, 2016), and cancer cells (Marchesin et al, 2015).

Increasing evidence suggests that these wave patterns underlie

fundamental processes such as cell division, migration, phagocyto-

sis, polarization, and gene expression. In mast cells, waves are

proposed to coordinate release of granules (Yang et al, 2017), while

in developing neurons, waves are suggested to widen axons to facili-

tate cargo transport (Winans et al, 2016). In migratory cells, waves

are linked with protrusions that drive cell motility (Weiner et al,

2007; Huang et al, 2013; Devreotes et al, 2017) and it has been

shown that changing wave properties can significantly alter migra-

tory modes of Dictyostelium cells (Miao et al, 2017). Although there

is rich theory regarding wave characteristics (reviewed in Tyson &

Keener, 1988), how this connects with the underlying molecular

architecture driving cortical waves is largely unknown.

Mathematical models consisting of reaction–diffusion equations

describing an activator–inhibitor excitable system have been able to

capture wave formation and propagation in biological systems real-

istically (Meinhardt & de Boer, 2001; Hecht et al, 2010; Xiong et al,

2010). In these models, the activator triggers a fast, autocatalytic

loop that generates positive feedback, and a slower inhibitor that

forms a negative feedback loop. As the activator and inhibitor dif-

fuse, the activity of these processes spreads throughout the medium

in the form of propagating wave. Cytoskeletal and signaling events

involved in waves display all-or-nothing responses, refractory peri-

ods, and annihilation upon wave collision—all hallmarks of exci-

table systems—supporting the merits of these excitability-based

models (Huang et al, 2013). These non-linear feedback models

suggest that interactions of multiple components are necessary to

generate excitable waves, and that alteration in any component can

have a significant impact on the overall network. By altering the
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strengths of various loops in these models and comparing the ensu-

ing patterns with experimental observations, the nature of the

underlying biochemical network can be elucidated.

The complexity of molecular events and interactions poses great

challenge for in-depth understanding of wave formation and cellular

protrusions at the molecular level. In multiple cell lines, numerous

molecules have been identified that are present in or are associated

with cortical waves. In Dictyostelium, components including F-actin,

phosphoinositides, small GTPases, kinases, and phosphatases, have

been shown to participate in wave propagation (Gerisch et al, 2011;

Devreotes et al, 2017). The numerous components are spatially and

temporally coordinated with each other; thus, localization character-

ization alone is insufficient to uncover the molecular network.

Component-specific perturbations are needed to reveal molecular

interactions at each node. In addition, these perturbations have to

be abrupt, in the time scale of seconds to minutes, to match the

highly dynamic nature of cortical waves (Gerhardt et al, 2014; Miao

et al, 2017). Here, we use acute, targeted perturbations, analyze

their effect on wave organization, and compare these observations

with theoretical predictions to map out the molecular connections

underlying the dynamic patterns. Further, we show a close correla-

tion between different cortical patterns and various cellular protru-

sions involved in cell migration. In contrast to the traditional view

that diverse cellular protrusions are distinct structures associated

with specific regulators, our results suggest that they are regulated

by the same molecular feedback machinery.

Results

Two distinct molecular networks appear as coordinated
cortical waves

Spontaneous waves have been observed using biosensors such as

LimEDcoil (“LimE”, detecting newly polymerized F-actin) and PHcrac

(detecting PIP3) at the cell cortex of Dictyostelium. These waves are

better visualized on the basal surface of electro-fused giant cells

(Gerhardt et al, 2014): PHcrac shows as diffuse one-peak bands, while

LimE appears as sharp two-peak bands enclosing the edge of PHcrac

with intermediate intensity in the middle (Fig 1A). Annihilation

events when two wave bands meet (Appendix Fig S1A) suggest the

excitable nature of the cortical waves. To gain insight into the molec-

ular principles of self-organization, we examined an array of biosen-

sors in waves and found that their morphologies fell into two groups:

PHcrac-like and LimE-like (Fig 1B–E). In the PHcrac-like group (Fig 1B

and C, and Movie EV1), RalGDS (monitoring Rap1 activation) and

RBD (monitoring multiple Ras activation) had intensity peaks

preceding those of PHcrac by 4.11 � 1.51 lm and 1.68 � 0.94 lm,

respectively, in the direction of wave propagation, while PKBA (Akt

homologue) trailed that of PHcrac by 1.28 � 0.95 lm. In the LimE-

like group (Fig 1D and E), RacGEF1 (a GEF protein for RacB and

Rac1a) showed almost identical patterns as LimE, while coronin had

the first peaks in the propagating direction consistently lag those of

LimE by 0.32 � 0.19 lm. PAK1-GBD (monitoring Rac1 activation)

showed the two-peak morphology, although both intensity peaks at

the wave edges were more diffuse than those of LimE. Another Rac

activity biosensor, PakBCRIB, behaved similarly (Appendix Fig S1B).

Different combinations of biosensors in the same cells showed that

these molecular events in waves occurred in a coordinated fashion

(Appendix Fig S1C–F). The earliest STEN event we observed, indi-

cated by RalGDS, peaked similarly with CEN sensor LimE but

showed a broader profile (Appendix Fig S1F).

In addition to displaying different morphologies in waves, these

two groups of biosensors showed distinct dependency on the

cytoskeleton. In cells treated with latrunculin A (“LatA”, inhibiting

actin polymerization), spontaneous PHcrac patches were observed,

yet PAK1-GBD, from the LimE-like group, appeared completely

quiescent, and failed to respond to stimulation of chemoattractant

cAMP (Fig 1F and Appendix Fig S2A), as was the case with

RacGEF1 (Appendix Fig S2B). In contrast, RalGDS responded to

cAMP both with and without the cytoskeleton (Appendix Fig S2C).

Taken together, these observations suggest that there are two

distinct networks associated with waves (Fig 1G): One includes acti-

vated Rap and Ras, PIP3, and PKBs, termed the signal transduction

excitable network (STEN); the other is cytoskeleton dependent and

includes activated Rac, RacGEF1, F-actin, and coronin, termed the

cytoskeleton excitable network (CEN).

A model of coupled excitable networks simulates the self-
organization of the cortical waves

A closer look at the two-peak structure of LimE waves revealed that

while the leading band appeared as a continuous structure of F-

actin, the trailing band included coarsely spread actin-spots or

puncta (Fig 2A and B). These puncta, which lasted 10.8 � 3.2 s,

were similar to the undulating actin flashes observed on the cell

cortex (Huang et al, 2013). None of the STEN biosensors showed

puncta-like behavior, suggesting that STEN and CEN have different

time scales. To understand how, in principle, the single-peak STEN

wave could coexist with the double-banded CEN wave, we turned

to a computational model.

To recreate the different dynamics observed for the signaling and

cytoskeletal systems, we set up a mathematical model in which

STEN and CEN were described by activator–inhibitor systems

(Fig 2C, and Materials and Methods). Because CEN waves do not

propagate on their own but rather follow the STEN patterns so that

their properties are dominated by STEN, STEN was used to control

CEN. As previously considered (Huang et al, 2013), STEN and CEN

have autocatalytic activators (FS and FC, respectively) and delayed

inhibitors (RS and RC, respectively). To account for the rapid flashes

observed on the cell cortex in the absence of STEN activity (Huang

et al, 2013), the CEN time scale was set to be around eight times

faster than STEN’s, by decreasing the delay in the CEN inhibitor

(high RC; Fig 2C, and Materials and Methods). As a result, simulated

CEN activity displayed puncta that did not spread significantly,

while STEN waves propagated through the medium (Fig 2D and E).

The interconnection of the two networks ensured that, whereas

in the absence of STEN, CEN firings occurred at a low basal level,

increasing STEN elevated the basal level of CEN activity. To illus-

trate the effect of this coupling, three different spatial wave profiles

were applied to CEN and the resulting patterns were compared

(Materials and Methods). All three profiles had a common leading

front but differed in their trailing edge. For an extended stimulus,

CEN displayed an elevated level of activity at the leading edge

followed by further bands (Appendix Fig S3A). For a spatially

restricted stimulus, the initial band was the same but this was not
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Figure 1. Two distinct networks coordinately present as cortical excitable waves.

A Left, time lapse confocal images of PHcrac (red) and LimE (green) in waves at the basal surface of a giant cell. Right, intensity plot across the blue dotted arrow in
image “30 s”. Scale bar represents 20 lm.

B–E Various biosensors in excitable waves. (B, D), snapshots of biosensors (top) and intensity plots (bottom) across the blue dotted arrows, with black plots showing the
corresponding biosensors in images above, red (B) showing PHcrac in the same cell, and green (D) showing LimE. (C, E), Scatter plots of biosensor peak locations
relative to the peak of PHcrac (C) or the first peak of LimE (E) across propagating waves (blue solid lines indicate median). Positive values indicate that the peak
precedes that of PHcrac (or LimE) along the direction of wave propagation. n = 26, 26, 24, 21, 21, 32 cells for RalGDS, RBD, PKBA, RacGEF1, PAK1-GBD, and coronin,
respectively. Scale bars in images above represent 20 lm. Gray arrows in all plots represent the direction of wave propagation.

F Left, confocal images of PHcrac (red) and PAK1-GBD (green) in the same cells treated with LatA. Scale bar represents 10 lm. Right, temporal profiles of normalized
mean cytosolic intensities of PHcrac (red) and PAK1-GBD (green) (mean � s.e.m., n = 18 cells) in response to cAMP.

G Cartoon illustrating components and their intensity profiles during wave propagation.

Source data are available online for this figure.

ª 2019 The Authors Molecular Systems Biology 15: e8585 | 2019 3 of 20

Yuchuan Miao et al Cortical waves organize cell protrusions Molecular Systems Biology

Published online: March 11, 2019 



A

C

D

G

slow

ST
EN

Fs

sR

fast

E F
LimE

B
0

2

4

6

8

10

12

sec

5 
μm

0

10

20

   
  L

ife
tim

e 
of

 p
un

ct
a 

(s
ec

)

sp
ac

e

space

th

STEN

sp
ac

e

time

r0In
hi

b
ito

r (
R 

 ) S

Activator (F  )S

CEN

th

sp
ac

e

time

In
hi

b
ito

r (
R 

 ) C

Activator (F  )C

1

i

In
hi

b
ito

r (
R 

 ) C

Activator (F  )C

2

ii

Activator (F  )C

ii

Activator (F  )C

H

I

time

in
te

n
si

ty 2

3

i ii

1

3

CE
N

Fc

cR

in
te

ns
ity

 (a
.u

.)

location (a.u.)
0 10 20

CEN
STEN

STEN
in

te
ns

ity
 (

a.
u.

)
CEN

STEN

location (a.u.)

ii

i

0 10 20

iii

iii
ii

i

CEN

Figure 2. A model of coupled excitable networks simulates the self-organization of the cortical waves.

A Confocal image of LimE in waves (scale bar, 20 lm).
B Top, kymograph of LimE in a fixed region across which a piece of wave propagates, with white arrows pointing to the same puncta. Bottom, box plot of puncta’s

lifetime (n = 100 puncta).
C The coupled STEN-CEN model, with FS and RS (FC and RC) denoting the activator and inhibitor of STEN (CEN), respectively. The interaction between STEN and CEN is

shown through the gray arrow.
D A typical phase plane trajectory of the state in STEN, where the initial inhibition level (r0) and threshold (th) are marked. The inset kymograph shows a typical STEN.
E A typical trajectory of CEN in phase space showing threshold as in (D). Although the nullclines of STEN and CEN are the same, the trajectory of CEN is significantly

shorter resulting in smaller waves as seen from the inset kymograph.
F A STEN-CEN organization profile with different instances in time marked for the corresponding phase plane trajectories in (G).
G (left) Plot showing the trajectory of the state in phase plane during the rising profile of STEN (i, from F). The rise of STEN shifts the CEN activator nullcline upwards

creating a sharp rise in CEN activity (1, from F). (middle) The initial fall of STEN (ii, from F) resulting in a refractory zone of CEN as its nullcline is lowered (2, from F).
(right) As the fall of STEN slows down, CEN reaches a firing position resulting in the second peak of CEN (3, from F).

H A two-dimensional snapshot of a propagating wave (direction of propagation indicated with the dashed arrow). A line scan corresponding to the STEN-CEN profile is
shown on the right.

I Stochastic simulations of the model in (C), showing the output from STEN (red, top right), CEN (green, top left), and the overlay (bottom right). A zoomed-in version
of a CEN wave is shown corresponding to the white box in the CEN. Three line scans are plotted on the bottom right corresponding to the white lines in the overlay
panel, showing the double-peak wave architecture of the STEN-CEN model.

Source data are available online for this figure.
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followed by any further CEN activity (Appendix Fig S3B). Finally,

an intermediate stimulus, chosen to resemble the experimentally

observed STEN wave profile, elicited a punctate trailing band

following the leading characteristic response (Fig 2F and G). The

resulting CEN profile resembled the two-peak structure of LimE

observed experimentally (Fig 2H). Although this model result may

suggest that STEN should “lead” the CEN waves while experiments

indicate otherwise (Fig 1A), we would like to emphasize that the

position of the peak is not indicative of the driver of the network.

Although STEN controls CEN, it is possible for the STEN peak to be

delayed. To illustrate this, we create input profiles by modifying the

rise and decay dynamics of STEN. These were fed into CEN so that

the input still drives CEN but the peaks are now separated

(Appendix Fig S3C and D). For simulation convenience, we use the

STEN output profile of Fig 2H for the rest of the paper. We simu-

lated the coupled system in which STEN was triggered stochastically

and observed single STEN and double CEN peak patterns that were

similar to those seen in experiments (Fig 2I).

The threshold of excitable networks determines the speed and
range of waves

Having established that the STEN and CEN patterns could be recre-

ated, we next considered the kinetics of wave propagation. As

expected from an excitable medium, STEN waves annihilate when

they collide (Appendix Fig S1A). However, we observed that they

can also stop on their own. A typical example of wave stopping is

shown in Fig 3A for both signaling (top) and cytoskeletal (bottom)

systems as seen in cells. We used theory and simulations to uncover

the controlling parameters of wave speed, range, and the mecha-

nism of wave stopping.

The dynamics of the activator (F)–inhibitor (R) system are best

visualized in phase space, where the trajectories of the state reflect

the changes in the concentrations of F and R (Fig 2D). A propagating

wave is triggered when the system state is displaced sufficiently to

cross the threshold for activation. This produces a sharp rise in F

without any appreciable increase in R, owing to the inherent delay of

the inhibitor. This time-scale separation allows wave speed analysis

using singular perturbation theory (Keener, 1980; Showalter &

Tyson, 1987), which states that the wave speed is determined by the

initial level of the inhibitor (R0). Specifically, wave speed is propor-

tional to the net area under the activator nullcline at a particular inhi-

bition level (shaded regions in Fig 3B). A higher system threshold

raises R0 and this causes the positive area to decrease (dark red

shade, Fig 3B) and the negative area to increase (light red shade,

Fig 3B), resulting in a slower wave. At a particular level of inhibition

(Rstop), these two areas are equal, and wave propagation stops.

We used simulations to illustrate a typical example of wave stop-

ping via a kymograph (Fig 3C). After triggering the excitable system

at an initial inhibition level, a wave of activity started to propagate.

We set the molecular dispersion of the inhibitor to be higher than

that of the activator (Materials and Methods). This made the level of

inhibition rise in space as the wave propagated, causing the thresh-

old to increase with time in the surrounding medium. This slowed

down the wave as it spread in space, reflected by the curving profile

seen in the kymograph. By comparing time-profiles (Fig 3C) close to

the trigger (i, left) or stopping point (ii, right), we see that in the

latter case, the initial inhibition level is closer to Rstop, indicating

slower wave speed and imminent stopping. In contrast, when the

dispersion of the inhibitor was too small, waves propagated indefi-

nitely, as is typical of neuronal waves (Tyson & Keener, 1988;

Bhattacharya & Iglesias, 2018a).

Although wave theory states that the level of inhibitor dictates

wave velocity, it describes a situation in which the activator param-

eters are constant. It is actually the relative level of the inhibitor

with respect to the minimum of the cubic nullcline (Fig 2D and E)

that controls the threshold (Bhattacharya & Iglesias, 2018b). One

can change the activator parameters to affect this relative level as

well. To illustrate this, we altered the positive feedback strength of

the activator—keeping the inhibitor parameters constant—to get

similar wave stopping and wave speed results (Appendix Fig S3E

and F). As reflected in the parameter table, the positive feedback

strength is more sensitive as compared to the negative feedback.

Based on these simulations, we made two predictions of how

wave characteristics change when the threshold is altered. First, at a

lower threshold, the wave will be faster because of the lower initial

level of R (Fig 3D). Second, the wave will propagate further because

the initial inhibitor level will be further away from the critical wave

stopping point, Rstop (Fig 3D, right). We illustrated these principles

through two-dimensional stochastic simulations in which waves

were triggered with high and low thresholds and the subsequent

propagations were compared (Fig 3E). Although the two waves

started together (yellow spot in first frame), by the last frame, the

wave generated by the system with higher threshold had propagated

more slowly and had also broken up owing to reduced wave range.

This inverse correlation between threshold and wave speed is

observed in a particular range of threshold (Appendix Fig S3G),

beyond which the system either has no appreciable wave spread

(high threshold) or oscillates synchronously (low threshold).

Finally, we showed that these principles depend on a combination

of diffusion and time delay of the inhibitor and not solely on diffu-

sion coefficient (Appendix Fig S3H).

Perturbations to STEN reveal its molecular architecture

To uncover the molecular basis of STEN, we next considered alter-

ing the system both through simulations, by changing the strength

of various feedback loops, and experiments, by introducing specific

perturbations. Though our model using one-way coupling captures

the organization of the STEN-CEN waves (Fig 2C), other observa-

tions suggest that CEN also feeds back to influence STEN triggering

(Huang et al, 2013; Taniguchi et al, 2013). Previously, we modeled

the feedback from CEN to STEN as having fast, positive and slow,

negative components (Shi et al, 2013; Materials and Methods). As

shown in Fig 4A, we introduced these elements into the STEN-CEN

model used here.

We lowered STEN threshold by increasing the strength of the

positive feedback, simulated the system, and observed the effect on

CEN waves (Appendix Fig S3I). As expected, STEN waves spread

further, causing the coupled CEN to follow suit (Fig 4B and Movie

EV2). A three-dimensional visualization (Fig 4C) showed that, initi-

ally, the waves had smaller range and broke up easily. After lower-

ing the threshold, the waves propagated further in space with a

significantly faster speed (Fig 4D).

We tested this in cells by using the chemically inducible dimer-

ization (CID) system for acute perturbations. Recruiting Inp54p by
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Figure 3. The threshold of excitable networks determines the speed and range of waves.

A Time lapse confocal images of PHcrac (top) and LimE (bottom) in the same giant cell (scale bar, 20 lm). White arrows point to wave breaking events.
B Three phase plane representations of the activator (F)–inhibitor (R) system with the activator nullcline (red) and the inhibitor nullcline (brown) for different inhibitor

levels. The horizontal dashed line corresponds to the initial inhibition level (R0) at equilibrium (blue circle). The net area (rightmost plot) is calculated by adding the
positive area above the horizontal line (dark red shade) and the negative area below (light red shade), for increasing levels of inhibition (R0 = Rlow, Rhigh, and Rstop).
The points Rlow and Rhigh correspond to high (chigh) and low (clow) wave velocities, respectively, as indicated on the right.

C (Left) Kymograph plotting the inhibitor activity with time and space as axes. The point where the wave is triggered is indicated in yellow. (Right) Two line scans (i
and ii) from the kymograph and the corresponding activity levels. R0 indicates the inhibition level at the time of the first trigger, while Rstop indicates the critical
stopping threshold. The activator profile is shown via the dashed red plot, while the inhibitor is the solid brown line. The gray vertical dashed line marks the point
when the activator element is triggered. The black horizontal dashed line denotes the inhibition level at the time of the specific trigger shown.

D Kymographs corresponding to high (left) and low (middle) thresholds with the white arrow denoting the range of the wave, which is calibrated with threshold R0
(right). The high threshold wave is superimposed in yellow on the low threshold wave to emphasize the increase in wave velocity as the low threshold wave spreads
further in space compared to the high threshold wave.

E Two-dimensional simulations where two waves, initiated at different thresholds, are triggered at the bottom left corner (leftmost panel). Overlap between the two
waves appears as yellow. The panels show the evolution of the two waves with time.

Source data are available online for this figure.
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the CID system to reduce PIP2 levels was shown to successfully

lower the threshold for STEN activation (Miao et al, 2017), and we

further examined its effects on waves. Within minutes following

rapamycin-induced Inp54p recruitment, nascent patches of LimE

waves started to expand outwardly in all directions until reaching

the edge of the cell or annihilating upon meeting adjacent waves

(Fig 4E and Movie EV3). Compared with waves beforehand, which

had limited range and asymmetric expansion patterns, waves after

PIP2 reduction typically propagated symmetrically without stopping

(Fig 4F and G). Interestingly, the second LimE peak became more

diffuse (Fig 4G). After about 10 min following rapamycin, the trig-

gering of waves synchronized and the waves merged, turning the

cell into a giant “oscillator” (Appendix Fig S4A). Similar effects were

observed using STEN biosensor PHcrac (Appendix Fig S4B and

Movie EV4). We compared wave speed before and after PIP2 reduc-

tion using an automatic algorithm and found a significant increase

compared with controls (Fig 4H and I). Further, the expansion of

STEN waves (PHcrac) after PIP2 reduction even occurred under LatA

treatment (Fig 4J and Movie EV5), suggesting that PIP2 levels medi-

ate a direct role in STEN independent of the cytoskeleton.

Elevating Rap or Ras activities through various nodes by the CID

system also led to modest increases in wave speed (Appendix Fig

S4C–F). In these cases, the second peak of LimE remained sharp

(Appendix Fig S4G). These suggest that Rap/Ras and PIP2 have antag-

onizing roles in STEN activities. Furthermore, while Rap/Ras biosen-

sors labeled active wave zones (Fig 1B), previous reports showed that

PIP2 biosensor PHPLCd fell off from those regions (Gerisch et al,

2011). Consistently, we found that PI5K, which synthesizes PIP2,

showed a complementary pattern to STEN/CEN waves (Fig 4K).

Taken together, our results suggest that PIP2 levels and Rap/Ras

activities inhibit each other to constitute a positive feedback loop that

controls the threshold for STEN activation (Fig 4L).

PKBs provide negative feedback in STEN and couple STEN to CEN

To gain insight into the delayed negative feedbacks in STEN, we

turned to PKBs, which are suggested to negatively regulate Ras activ-

ities (Charest et al, 2010) and showed a delayed profile during wave

propagation (Fig 1B and C). Acute recruitment of cytosolic PKBA to

plasma membrane was sufficient to activate it and its substrates

while also increasing the activity of endogenous PKBs (Appendix Fig

S5A and B). These activities were inhibited by the combination of

LY294002 (PI3K inhibitor) and PP242 (TorC2 inhibitor).

Dramatically, increasing PKB activities rapidly caused a significant

decrease in the speed and range of the LimE waves, turning them into

tiny patches (Fig 5A–C and Movie EV6). At the same time, the

number of patches increased significantly (Fig 5C), consistent with

the conventional role of PKBs in mediating cytoskeletal events. Simi-

larly, other STEN and CEN biosensors, including PHcrac, RalGDS, and

RacGEF1, rearranged into non-propagating patches (Fig 5D and

Appendix Fig S6). Importantly, the relative relationship between

STEN and CEN biosensors was preserved in these patches, where

PHcrac had highest intensity in the center while LimE at the edge

(Fig 5E and F, and Movie EV7). To examine the role of PKBs in STEN

directly, we used LatA to exclude contributions of F-actin in this

context. Recruiting PKBA quickly quenched spontaneous STEN activi-

ties represented by the biosensor PHcrac (Fig 5G, Appendix Fig S5C,

and Movie EV8). In addition, the same approach dampened the

response of PHcrac to an unsaturated dose of cAMP stimulation under

LatA treatment (Appendix Fig S5D). These together suggest that

recruiting PKBA led to an elevated threshold for STEN activation.

These observations indicate that increasing PKB activity has two

effects (Fig 5G). On one hand, it mediates negative feedback, as

indicated by the decrease of wave speed and range, thus raising the

threshold for STEN activation. On the other hand, it increases the

basal level of input to CEN, thus lowering the threshold for CEN fir-

ings, as illustrated by the greater number of patches. We tested this

scheme (Fig 5H) through simulation by raising the STEN threshold

and lowering the CEN threshold simultaneously (Appendix Fig S3J).

This resulted in the appearance of a large number of waves with

small range, which closely resembled those observed in experiments

(Fig 5I and Movie EV9). The CEN activity was still organized by the

STEN waves, which had broken up into smaller wavelets (Fig 5J).

These waves were significantly smaller and slower, consistent with

high threshold predictions (Fig 5K and L). While raising the STEN

threshold would typically lower the number of firings, this was

▸Figure 4. Perturbations to STEN reveal its molecular architecture.

A The STEN-CEN model architecture where Fs and Rs (Fc and Rc) denote the activator and inhibitor of STEN (CEN), respectively, showing the feedback connections
between CEN and STEN. The positive feedback is indicated through the arrowhead, while the bar at the end of the arrow refers to negative feedback.

B Time lapse images showing simulations of the coupled STEN-CEN model demonstrating CEN (top) and STEN (bottom) waves spreading in space. The threshold was
lowered by increasing positive feedback of STEN (perturbation) at time 0. The white arrow (time 0, CEN) denotes a wave at a high threshold that disappears in the
next image, while the red arrow (time 25, CEN) points to a lowered threshold wave that enlarges and spreads.

C A 3D representation of simulation waves under high (left) and low (right) threshold waves propagating in time.
D Quantification of simulated wave speed before and after threshold lowering (+perturb). Statistics are from eight simulations. Error bars are from the Student’s t-test.
E Time lapse confocal images of LimE at the basal surface of a giant cell, which recruits Inp54p to membrane induced by rapamycin at time 0. The white arrow

(�45 s) points to a nascent wave before Inp54p recruitment, while the red arrow (60 s) after Inp54p recruitment.
F Color-coded overlays of LimE before and after Inp54p recruitment. White arrows point to nascent waves at time 0.
G Kymographs of LimE in regions outlined by dotted line boxes in (F).
H, I Box plots of mean wave speed (left) and fraction of fastest pixels (right) before and after Inp54p (H) or FRB (I) recruitment (red bars indicate median, n = 25 cells

each). Error bars are from the Student’s t-test.
J Time lapse confocal images of PHcrac at the bottom of giant cells under LatA treatment, where rapamycin is added at time 0 to induce Inp54p recruitment. White

arrows point to wave patches right before rapamycin addition.
K Confocal image of PI5K (left) and LimE (right) at the bottom of the same cell.
L Cartoon highlighting positive feedbacks in STEN.

Data information: All scale bars in images represent 20 lm. (D, H) Boxes indicate upper and lower quartile; whiskers indicate maximum and minimum.
Source data are available online for this figure.
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compensated by the increase in CEN activity, which feeds back posi-

tively onto STEN. Though CEN also provides negative feedback to

STEN in our model (Fig 4A), the slower dynamics of this feedback

filter out the fast CEN activities (Appendix Fig S3I).

Perturbations uncover the molecular architecture of CEN and its
feedback to STEN

To illuminate the organizing principles of waves further, we developed

tools to change the threshold of CEN directly. Using the CID system,

we acutely recruited the catalytic domain of RacGEF1 (Park et al,

2004), RacGEF1DN, to the plasma membrane, and found that it trig-

gered massive actin polymerization events at the cell periphery within

minutes (Fig 6A and Movie EV10). In giant cells, the typically orga-

nized LimE wave patterns were totally altered. In addition to LimE

signals detected along the whole perimeter, random diffuse patches

and puncta took over the cell bottom (Fig 6B–D and Movie EV11).

Interestingly, these LimE puncta have a lifetime of 10.5 � 3.5 s

(Fig 6D), similar to the puncta observed at the second peak of LimE

during wave propagation (Fig 2B). Given that full-length RacGEF1 co-

localized with LimE in waves (Fig 1D), a positive feedback loop

consisting of Rac activities and F-actin was clear (Fig 6E).

These observations suggest that recruiting RacGEF1DN lowered the

threshold of CEN, and we next tested this effect in our model. Since

the resulting observed diffused patches were longer-lived than the

aforementioned puncta (Fig 6D), suggesting a state with greater activ-

ity, we increased the positive feedback of CEN to account for the

perturbation (Fig 6E) shifting the equilibrium to a higher stable state

(Appendix Fig S3K). Simulations following this adjustment showed

large patches of CEN (Fig 6F, top; Movie EV12), consistent with those

seen experimentally. These patches were diffuse and lacked organiza-

tion (Fig 6G), suggesting that STEN was being inhibited. Simulations

captured an initial burst due to the fast, positive feedback from CEN

to STEN, followed by a total abrogation of STEN activity (Fig 6F,

bottom; Movie EV12), as the slow, negative feedback from CEN

ensued. The global triggering of the negative feedback in this case led

to a stronger effect accounting for the total shut-off of STEN, in

contrast to the more local effect seen previously (Fig 5I). This nega-

tive feedback remained elevated and rendered the system impervious

to the continuously changing patch dynamics (Appendix Fig S3K).

When investigating STEN activities in cells, we found that PHcrac

signals were inhibited after RacGEF1DN recruitment (Fig 7A and

Movie EV13). In a cell with both PHcrac and LimE as readout, the

difference was obvious: While LimE greatly increased at the cell

perimeter and displayed as patches and puncta, PHcrac was comple-

tely quiescent (Fig 7B,C). The different responses of STEN and CEN

following RacGEF1DN recruitment were further demonstrated by

biosensors RalGDS (Fig 7D and Appendix Fig S7A and B) and full-

length RacGEF1 (Appendix Fig S7C and D). Here, in the absence of

STEN activities, CEN components abandoned their signature

morphology (Fig 1G) but rather displayed the highest intensity in

the center of patches. These results further support STEN’s organiz-

ing role of CEN.

Careful examination showed that STEN activities were promoted

transiently before being inhibited, like those seen in our simulations.

At the cortex of single cells, PHcrac intensity went up in the first

2 min during RacGEF1DN recruitment before staying at a reduced

level after 5 min (Fig 7E–G). Effects of RacGEF1DN recruitment were

lost in LatA treatment (Fig 7H), suggesting that these responses of

STEN relied on the cytoskeleton. Moreover, the steady inhibiting

effects on STEN could be overcome by an unsaturated dose of

chemoattractant (Fig 7I). These results support that CEN has both a

fast, promoting and a slow, inhibiting effect on STEN, validating our

computational model. To look for molecular mediators of these feed-

backs, we examined F-actin-binding GflB and RapGAP1, which are

GEF and GAP proteins for Rap1, respectively. These proteins showed

LimE-like patterns in waves, with RapGAP1 lagging GflB and LimE

(Fig 7J–L). Further, GflB and RapGAP1 displayed diffuse patches

and signals along cell periphery after RacGEF1DN recruitment

(Fig 7M and N), similar with previous CEN biosensors. These obser-

vations suggest that GflB and RapGAP1, which are under CEN regu-

lation but mediate STEN activities, serve as positive and negative

feedbacks, respectively, from CEN to STEN (Fig 7O).

Cortical wave patterns correlate with profiles of
cellular protrusion

Cortical waves have been suggested to play roles in cell migration.

We showed previously that lowering the threshold of STEN

promoted broad, sheet-like expansions over small, cup-like

▸Figure 5. PKBs provide negative feedback in STEN and couple STEN to CEN.

A Time lapse confocal images of LimE at the basal surface of a giant cell, which recruits PKBA to membrane induced by rapamycin at time 0.
B T-stack of LimE in the region outlined by the colored line box in (A).
C Box plots of mean wave speed (left), mean wave patch area (middle), and average number of wave patches per frame (right) before and after PKBA recruitment (red

bars indicate median, n = 24 cells). Error bars are from the Student’s t-test.
D Time lapse confocal images of PHcrac at the basal surface of a giant cell, which recruits PKBA to membrane induced by rapamycin at time 0.
E Confocal images of PHcrac (left) and PHcrac merged with LimE (middle, PHcrac as red, LimE as green) in a giant cell after steady PKBA recruitment. Right, intensity plots

of PHcrac (red) and LimE (green) across the blue box.
F Kymograph of PHcrac (red) merged with LimE (green) along the white dashed line from (E).
G Time lapse confocal images of PHcrac at the bottom of a giant cell treated with LatA, where rapamycin is added at time 0 to induce PKBA recruitment.
H Cartoon highlighting PKB mediating negative feedbacks in STEN and giving inputs to CEN.
I Time lapse images showing simulations (CEN—top, STEN—bottom) of the model in g with the feedbacks in red altered at time 0 (perturbation).
J (top) An example of an overlaid STEN-CEN wave with STEN in red and CEN in green. The line scan (blue box) is shown below.
K A 3D representation of the CEN waves before and after the perturbation is introduced (time 0).
L Quantification of different wave characteristics before and after the perturbation. Error bars are with eight simulations, from the Student’s t-test.

Data information: All scale bars represent 20 lm. (C, L) Boxes indicate upper and lower quartile; whiskers indicate maximum and minimum.
Source data are available online for this figure.
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Figure 6. RacGEF1-mediated positive feedbacks in CEN modulate wave profiles.

A Left, time lapse confocal images of LimE in single cells following RacGEF1DN recruitment, induced by rapamycin addition at time 0. Right, temporal profile of
normalized mean LimE intensity at cell cortex (mean � s.e.m., n = 20 cells).

B Time lapse confocal images of LimE at the basal surface of a giant cell, which recruits RacGEF1DN to membrane induced by rapamycin at time 0.
C T-stack of LimE in the region outlined by the colored line box in (B).
D Right, kymographs of LimE along a line across giant cells after RacGEF1DN recruitment. Top left, confocal image with a dotted line as an example used to make

kymographs. White arrows in image and kymographs point to examples of actin puncta. Bottom left, box plot of lifetime of puncta (red bar indicates median,
n = 100 puncta from 10 cells). Boxes indicate upper and lower quartile; whiskers indicate maximum and minimum.

E Cartoon highlighting positive feedbacks in CEN.
F Simulations of the model in (E), showing the CEN (top) and STEN (bottom) activity, before and after the feedback is altered (perturbation) at time 0.
G The CEN activity stacked in time showing how the waves become diffuse after the perturbation is introduced.

Data information: All scale bars represent 20 lm.
Source data are available online for this figure.
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protrusions, causing amoeboid cells to transition to keratocyte-like

and oscillatory cells (Miao et al, 2017). Acutely recruiting PKBA,

which elevated the threshold of STEN and concomitantly increased

the input into CEN, generated cells with long, thin protrusions all

over the perimeter and hindered motility (Fig 8A and Movie EV14).

On the other hand, recruiting RacGEF1DN, which drastically lowered

the threshold of CEN and caused STEN inhibition, rendered cells

immobile with ruffle-like protrusions along the whole perimeter

(Fig 8B and Movie EV14). Although cells after RacGEF1DN recruit-

ment had persistently high level of actin polymerization, they failed

to form any big protrusions and did not spread as dramatically as

oscillators (Fig 8C), supporting the notion that CEN alone is not suf-

ficient to form sustained protrusions for cell motility. Images of

phalloidin-stained cells illustrating the diverse protrusions following

perturbations are shown in Fig 8D. Simulations of our computa-

tional model coupled to a viscoelastic mechanical model, under

various perturbations, captured the experimentally observed cellular

protrusions (Fig 8E and Movie EV15).

Discussion

All together, we combined theoretical and experimental approaches

to reveal a molecular architecture controlling the organization of

cortical waves (Fig 9A). We found that Ras/Rap- and Rac/actin-

centered networks, STEN and CEN, respectively, interact to control

dynamic wave patterns at the cell cortex. Although the components

we highlight are only a subset of the overall system (Devreotes et al,

2017; van Haastert et al, 2017; Fort et al, 2018; Li et al, 2018; Tanabe

et al, 2018), they capture essential features of wave organization. In

each network, various components sequentially and coordinately

engage in wave propagation. Perturbations on each of these constitu-

ents have dramatic effects, suggesting that they are all integral parts

of the excitable networks. In each of our perturbations, a specific

component of the network was “clamped”. Rather than causing the

whole network to become similarly clamped, as would occur in a

simple cascade connection, the intricate feedback connections within

the coupled networks allowed the system to adjust by organizing

other elements into new dynamic patterns. The new patterns caused

by each of these perturbations correspondingly led to distinct cellular

protrusions involved in migration (Fig 9B), leading to a network-

centric theory on the generation of diverse cortical protrusions.

Small GTPases centric networks closely interact to bring about
wave patterns

In our molecular scheme (Fig 9A), we propose that PIP2 and Ras/

Rap activities constitute a positive feedback loop in STEN, in which

lowered PIP2 levels promote more Ras/Rap activities possibly via

regulating GEF and GAP proteins, and elevated Ras/Rap can further

lower PIP2 levels through the activation of PI3K and PLC. Once the

positive feedback loop starts, PKBs’ activation can be set off in a

delayed manner and serve as a negative feedback loop by elevating

PI5K activity to increase PIP2 synthesis (Kamimura et al, 2008; Fets

et al, 2014) and inhibiting Sca1-associated GEF-containing complex

(Charest et al, 2010). Through another set of substrates, PKBs trans-

mit information to CEN, where Rac activity and F-actin comprise a

positive feedback loop through F-actin binding RacGEF1, and where

time-delayed coronin could engage in a negative feedback loop. CEN

also regulates STEN through F-actin-dependent GflB and RapGAP1,

which are GEF and GAP proteins, respectively, for Rap GTPase.

Together, STEN and CEN are coordinately linked with each other,

such that supra-threshold fluctuations or inputs in any component

can trigger the whole system leading to wave propagation.

Although linked, STEN and CEN play fundamentally different

roles in wave organization. Components of each network displayed

distinct morphologies and dynamics, with STEN showing diffuse

bands and CEN displaying sharp bands with puncta. Our simula-

tions showed that a difference in time scales, STEN as a slow, and

CEN as a fast, excitable network, is sufficient to recreate the

▸Figure 7. CEN exerts fast positive and slow negative feedbacks to STEN.

A Time lapse confocal images of PHcrac at the basal surface of a giant cell, which recruits RacGEF1DN to membrane at time 0 induced by rapamycin.
B Confocal images of PHcrac (left) and PHcrac merged with LimE (right, PHcrac as red, LimE as green) in a giant cell after RacGEF1DN recruitment.
C Kymograph of LimE (top, green) and PHcrac (bottom, red) across the dotted line in (B).
D Confocal image of RalGDS (left) in a giant cell after RacGEF1DN recruitment and the corresponding kymograph (right) across the dotted line in the image.
E Time lapse confocal images of PHcrac in single cells, which recruit RacGEF1DN to membrane induced by rapamycin at time 0. White arrow points to PHcrac patches at

cell cortex.
F Kymographs of PHcrac at cell cortex before and after RacGEF1DN recruitment.
G Temporal profiles of normalized PHcrac intensities at cell cortex before and after RacGEF1DN recruitment (mean � s.e.m., n = 20 cells). Red dashed lines in (F, G)

indicate rapamycin addition at time 0.
H Distribution of different sizes of PHcrac patches at cell cortex under LatA treatment, with (solid) or without (hollow) RacGEF1DN recruitment (~ 6,000 cells from three

independent experiments).
I Temporal profiles of normalized cytosolic intensities of PHcrac in response to 1 nM cAMP stimulation at time 0, with (red) or without (blue) RacGEF1DN recruitment

(mean � s.e.m., n = 25 cells each).
J Confocal images of GflB (top) and RapGAP1 (bottom) in waves at the basal surface of a giant cell.
K Intensity plots of GflB (blue) and RapGAP1 (orange) across the green dotted arrow in (J).
L Scatter plots of first peak distances, of GflB relative to LimE, RapGAP1 relative to LimE, and RapGAP1 relative to GflB in the same giant cells (red lines indicate

median, n = 19 cells each).
M Confocal images of GflB (top) and RapGAP1 (bottom) at the basal surface of the same giant cell after RacGEF1DN recruitment.
N Kymographs of GflB (top) and RapGAP1 (bottom) across the green dotted lines in (M).
O Cartoon highlighting positive and negative feedback loops from CEN to STEN.

Data information: All scale bars represent 20 lm.
Source data are available online for this figure.
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observed morphologies. Perturbations on STEN components, includ-

ing PIP2, Ras, and PKBA, drastically changed wave characteristics.

Notably, in all these cases, CEN components retained their signature

morphologies and relative relationship with STEN markers. Only in

the case where STEN was totally inhibited due to strong negative

feedback after recruiting RacGEF1DN, CEN components lost their
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organized morphology and displayed as diffuse patches and random

puncta. Taken together, these observations suggest that STEN

orchestrates CEN and dictates the wave speed and range, while CEN

controls the triggering of STEN through feedbacks.

Feedback strengths of the network control speed and range
of waves

There are multiple parameters determining wave characteristics.

First, the cortical waves observed appear as traveling pulses with

trailing refractory zones, rather than only advancing fronts. The dif-

ference between these two types of waves is that fronts can arise

from single-species dynamics, but pulses require at least two inter-

acting components (Holmes et al, 2012). This suggests that these

waves arise from an activator–inhibitor structure operating in the

excitable regime, indicating the need for at least two interacting

components as well as diffusion. Second, although diffusion is

necessary for a wave to propagate, it does not appear to be rate

limiting since the reaction rates are much slower than diffusion of

ions/lipids/proteins between neighboring cortical elements.

ssendnu o
R

1

0.5

0 wt +RacGEF1 Spread
(Oscillator)

wt +RacGEF1

(
aeralle

C
mμ

²) 1000

500

0 Spread
(Oscillator)

wt +RacGEF1 Oscillator
0

0.2

0.4

0.6

ecnairavfotneic iffeo
C

aerallecf o

A

B

0 1 min

0

10
min

1 min

PKBA recruitedLimE
LimE

0 1 min

0

10
min

1 min

RacGEF1 recruitedLimE
LimE

mμ
05

mμ
05

E Raising/Lowering the threshold
 of STEN/CENLowering the threshold of STEN

Lowering the threshold of CEN
Inhibiting STENWild type

5 μm

D

Top view

Side view

5 μm

+I
np

54
p

+I
np

54
p

+P
K

B
A

+R
ac

G
E

F1

C

Figure 8. Perturbations causing different cortical patterns also altered cellular protrusions correspondingly.

A, B Left, confocal images of LimE (top) and kymographs of cortical LimE (bottom) in single cells with PKBA (A) or RacGEF1DN (B) steadily recruited (scale bars, 10 lm).
Right, color-coded overlays of LimE in single cells.

C Box plots of roundness (left) and cell area (middle) comparing wt, cells with RacGEF1DN recruited, and spreading phases of oscillators after Inp54p recruitment (n = 100
cells each). Right, box plots of coefficient of variance of cell area with the above conditions in a 10-min time window (n = 30 cells each). Red bars indicate median. Boxes
indicate upper and lower quartile; whiskers indicate maximum and minimum.

D Phalloidin staining of cells after perturbations. Maximal intensity projections are shown.
E Snapshots from level set simulations using the activity obtained from earlier simulations.

Source data are available online for this figure.
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Figure 9. Models of what molecular feedbacks generate cortical patterns and how wave patterns bring about diverse protrusions.

A Summary of molecular interconnections underlying cortical wave self-organization.
B Diagram of different profiles of cortical patterns and corresponding cell morphology.
C Upper right illustrates a simplified case where the wave propagates along cell cortex without inducing membrane deformation such as waves at the basal surface of

an adherent cell. Individual actin filaments do not dislocate laterally, only elongate perpendicularly to the cell membrane generating retrograde flow (green arrow).
STEN activity propagates along the cortex as waves (blue arrows) and leads to CEN activation promoting new actin polymerization (bright green). The successive
polymerization events among filaments thus spread along the cortex in the form of waves (also blue arrows). After STEN moves away, actin polymerization ceases,
and existing filaments gradually depolymerize. Lower panels show that waves with different properties result in different types of protrusions.
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Our results suggest that the speed and range of the traveling

pulse depend on an intricate balance between the strengths of the

various loops and the resulting threshold (Fig 3). Theoretical studies

have long proposed that the level of inhibition in the medium acts

as a “controller species” (Fife, 1984; Tyson & Keener, 1988) regulat-

ing wave speed. Modulating excitability through optical stimulations

to alter wave characteristics has been demonstrated in the

Belousov–Zhabotinsky reaction (Sakurai et al, 2002). In the

mammalian cortex, use of electric fields to alter neural threshold

has been shown to change wave speed (Richardson et al, 2005).

Here, we demonstrate that this theoretical relationship between

wave speed and threshold holds in the cellular signaling system.

The system studied has allowed us to also probe the range of

traveling waves. Unlike action potentials that propagate along axons

indefinitely with little damping, the biochemical cortical waves had

finite range. The theory indicates that wave range is correlated with

threshold. Wave range becomes pertinent in migrating single cells

as the size of the wave dictates the morphology of the protrusion

that drives the cell. In wild-type cells, the cortical waves stopped

after traversing a short distance on the membrane—which trans-

lated to a finite protrusion size in single cells. Lowering the thresh-

old of the network expanded the size of these protrusions ultimately

to envelop the whole cortex—leading to fan-shaped and oscillatory

cells (Miao et al, 2017).

A network view of diverse cellular protrusions

We found that perturbing the networks led to different cortical

patterns of F-actin, and the same perturbations altered cellular protru-

sions correspondingly (Fig 9B). In unperturbed cells, the waves have

a finite range, and the protrusions appear as macropinosomes and

pseudopodia with a defined size. Lowering the threshold of STEN

increases the speed and range of waves, and cells generate much

expanded, sheet-like protrusions resembling lamellipodia. This

promoted cell migratory mode transitions, as we showed previously

(Miao et al, 2017). On the other hand, raising the threshold of STEN

restricts the outward propagation of patterns, and cells make spiky,

filopodia-like protrusions. When STEN is inhibited due to feedback

from elevated CEN, actin polymerization displays diffuse patches and

puncta. Correspondingly, without STEN, cells are not capable to form

sustained protrusions and show ruffle-like protrusions instead.

Specific, individual molecular regulators of various protrusions

such as macropinosomes, lamellipodia, filopodia, and ruffles have

been proposed in the literature (Mejillano et al, 2004; Mattila &

Lappalainen, 2008; Mahankali et al, 2011; Krause & Gautreau, 2014;

Veltman et al, 2016). Our findings suggest that these regulators are

all feeding into the same overall molecular machinery. Here, we

rapidly switched among these protrusions and traced each transition

to a change in the behavior of the networks. Thus, we propose that

global properties of the Ras/Rap-centered STEN and Rac/F-actin-

centered CEN are the actual determinants controlling the entire

spectrum of protrusions seen in cell migration.

The coupled STEN-CEN model explains how wave patterns
control protrusions

We propose that wave patterns generated by the coupled excitable

networks serve as a higher order organizer of cellular morphology

(Fig 9C). Diverse protrusions differ by how far they extend

outwards from the cell cortex and how wide they expand laterally.

Actin filament elongation against the cell membrane generates

protrusive forces, while their parallel organization defines the lateral

range of protrusions. Thus, a slowly moving organizer would lead

to narrower and longer projections, while a rapidly moving one

would produce wider and shallower protrusions.

In our proposal, the STEN-CEN waves laterally coordinate

successive and transient actin polymerization events along the cell

cortex (Fig 9C). This lateral coordination is required to produce

meaningful cellular structures whose scale largely exceeds that of

individual actin filaments. Simple diffusion by organizing molecules

would be insufficient (Deneke & Di Talia, 2018). Instead, the reac-

tion–diffusion waves by the STEN-CEN system fulfill this lateral

communication. As the wave propagates laterally along the cortex,

it initiates transverse actin polymerization events which showed no

dislocation (Fig 2B). On the other hand, the duration of STEN activ-

ity controls the extent of outward polymerization at a given spot,

thus also influencing protrusive properties.

Innately, waves with a limited range generate cup-like macropi-

nosomes with defined sizes due to wave stopping. Asymmetric wave

propagation can lead to pseudopodia-like protrusions. When the

speed and range of waves increase—for example, after lowering

PIP2 or raising Rap/Ras activities—parallel polymerization events

sweep laterally more quickly generating widened protrusions resem-

bling lamellipodia. When the STEN waves propagate very slowly, for

example, after PKBA recruitment, local CEN receives constant input

from STEN and continuously stimulates actin polymerization, lead-

ing to long, thin protrusions. When STEN waves are inhibited after

RacGEF1DN recruitment, polymerization cannot be organized or

sustained, promoting only ruffles. Thus, STEN-CEN waves with dif-

ferent speed and range can lead to numerous collective patterns of

polymerizing filaments in time and space, creating protrusions of

diverse properties.

Materials and Methods

Cells and plasmids

Wild-type Dictyostelium discoideum cells of the AX2 strain, obtained

from the R. Kay laboratory (MRC Laboratory of Molecular Biology,

UK), were used in this study. Cells were used within 2 months of

thawing from frozen stocks. To improve the efficiency of co-expres-

sing multiple proteins, heat-killed Klebsiella aerogenes (KA) was

supplemented to all cell culture dishes.

Plasmids encoding the CID system are mostly described previ-

ously (Miao et al, 2017). In addition, to make mCherry-FRB-

RacGEF1DN (pCV5), sequence encoding 611–1,218 amino acids of

RacGEF1 were amplified from genome DNA and inserted into the

plasmid mCherry-FRB-MCS, with five repeats of AGTGCTGGTGGT

between FRB and RacGEF1DN. Constructs based on pCV5 and pB18

are G418 resistant, and pDM358 is hygromycin resistant. Different

pCV5 or pB18 constructs can be used together during cell transfor-

mation to co-express several proteins, while the cells are selected

using only G418. Here are some key plasmid combinations used

(plasmids are named based on composition of fusion proteins from

N to C terminus):
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Recruiting Inp54p, LimE as readout: mCherry-FRB-Inp54p (pB18);

myr-FKBP-FKBP/LimE-YFP (pDM358).

Recruiting Inp54p, PHcrac as readout: mCherry-FRB-Inp54p (pB18);

myr-FKBP-FKBP/PHcrac-YFP (pDM358).

Recruiting PKBA, LimE as readout: PKBA-mCherry-FRB (pCV5);

myr-FKBP-FKBP/LimE-YFP (pDM358).

Recruiting PKBA, LimE and PHcrac as readout: PKBA-CFP-FRB

(pCV5); myr-FKBP-FKBP (pCV5); PHcrac-YFP/LimE-RFP (pDM358).

Recruiting RacGEF1DN, LimE as readout: mCherry-FRB-RacGEF1DN

(pCV5); myr-FKBP-FKBP/LimE-YFP (pDM358).

Cell fusion

Growth-phase cells grown in suspension or on cell culture dishes

were harvested, washed, and resuspended in SB (17 mM Soerensen

buffer containing 15 mM KH2PO4 and 2 mM Na2HPO4, pH 6.0) at a

density of 1.5 × 107 cells/ml. 7–10 ml of cells was put into a 50-ml

conical tube and rolled gently for ~ 30 min, to promote visible cell

clusters formation. 800 ll of rolled cells was transferred to a 4-mm-

gap electroporation cuvette, using pipette tips whose edges were cut

off to avoid breaking clusters. Electroporation was carried out with

the following settings: 1,000 V, 3 lF for once, and 1,000 V, 1 lF for

three times, with 1–2 s between pulses. Then, 50 ll of cells was

transferred to the center of a well in an 8-well chamber and was left

still for 5 min. 450 ll of SB plus 2 mM CaCl2 and 2 mM MgCl2 was

added to the well and was pipetted briefly to suspend the cells

evenly. After enough cells settled down to the bottom, all media

together with excess floating cells were removed and 450 ll of new
SB plus 2 mM CaCl2 and 2 mM MgCl2 was gently added to the well

against the wall. Cells were left still for 1 h for recovery before

imaging experiments.

Microscopy

Zeiss LSM780 and Zeiss LSM800 GaAsP single-point laser-scanning

microscope were used for confocal image acquisition, where bottom

focal planes were focused on to capture basal cortical waves.

Biosensors peak distance

Peak distance was computed using a custom-written MATLAB

script. Intensities of the red and green channels in a manually

selected region were filtered using a moving average filter of length

19 pixels. Based on these filtered profiles, the locations of the maxi-

mum intensity for each color were obtained using the max function.

The distance between the two maxima was then used.

Wave speed analysis

To measure wave speed, a custom MATLAB script was used.

Briefly, wave fronts were segmented at subsequent frames of

videos. Based on these segmentations, the number of patches and

mean area was computed. To measure mean speed, the distance

from each pixel on the boundary of a wave front in frame n + 1 to

closest edge of a wave in frame n was computed. This number was

compared to low and high thresholds (0.1 and 5 mm, respectively)

to ensure that it represented movement of the same wave front.

Data were then averaged over all fronts in a frame to record average

wave speed. The “fraction of fastest pixels” is the fraction of all

pixels at the edge of a wave front whose frame-to-frame displace-

ment is at least one standard deviation higher than the mean, where

the mean and standard deviation are computed for all frames in the

video. Data from 30 frames at 15-s intervals were used to compute

averages before CID recruitment. Thereafter, 30 frames were

allowed to elapse to allow CID to have effect, before data for a

further 30 frames were used to compute the post-recruitment

numbers.

Mathematical modeling and analysis

Coupled excitable system wave simulations and perturbations

The excitable waves were modeled through reaction–diffusion equa-

tions. The STEN was set up as an activator (FS)–inhibitor (RS)

system as shown below (Bhattacharya & Iglesias, 2018b):

@FS
@t

¼ DFsr2FS � a1s þ a2sRSð ÞFS þ a3sFS
2

a24s þ FS
2 þ a5s þ UN

@RS

@t
¼ DRs

r2RS þ 2S �RS þ c1sFSð Þ

The non-linear term in the activator equation contributes to the

positive feedback, while the epsilon (e) in the inhibitor equa-

tion accounts for the slowness in the response of the inhibitor.

When the activator receives a supra-threshold input, the autocat-

alytic feedback leads to a sharp rise in activity, creating the wave

front. The inhibitor, albeit slowly, accumulates to ultimately

subdue the activator concentration—creating the wave back. This

change in concentrations is better visualized through trajectories

in phase space. A large delay in inhibitor response causes the

initial trajectory of the state to be nearly horizontal as shown in

Fig 2D. After the inhibitor subdues the activator response, it then

decays back to resting concentration, which is reflected as the

vertical descent of the state toward the final equilibrium. This

decay time of the inhibitor creates the refractory period. Coupled

with diffusion across adjacent excitable elements, this results in

the propagation of a wave “pulse”, identified by a sharp rise and

fall in activity.

The threshold of the excitable system is related to the difference

between the initial inhibition level (R0) and the minimum of the

cubic nullcline (Fig 2D). We used two parameters to modulate this

threshold: one, the strength of the autocatalytic positive feedback

(parameter a3s), which alters the cubic nullcline shape as in

Appendix Fig S3I (Inp54p, red activator nullcline), and two, the

slope of the inhibitor nullcline (parameter c1s), which changes the

initial inhibition level R0, as in Appendix Fig S3J (PKBA, red inhi-

bitor nullcline). Each of these perturbations was simulated by line-

arly altering the target parameter gradually over a period of 10

simulation time units. The term, UN, represents the stochastic input

to STEN. This was modeled as a zero-mean Gaussian white noise

process with a standard deviation given as: rN = Ub + Zc � Wc.

This consisted of three parts: one, a basal level of stochastic fluctua-

tions that triggers the cell even in the absence of the cytoskeleton

(Ub); two, a positive feedback from the cytoskeletal excitable

network (ZC); and three, a negative feedback from CEN (WC). The
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feedback from CEN was incorporated in the stochastic term so as to

account for the rapidly changing local dynamics of cytoskeletal

activity in contrast to the uniform long-ranging effects of altering

direct feedback connections.

CEN was modeled similar to STEN, as an activator (FC)–inhibitor

(RC) system with slight alterations to the parameter values.

@FC
@t

¼ DFcr2FC � a1c þ a2cðRC � sinÞð ÞFC þ a3cFC
2

a24c þ FC
2 þ a5c

@RC

@t
¼ DRc

r2RC þ eC �RC þ c1cFCð Þ

In contrast to the bistable oscillatory network proposed earlier

in the literature (Huang et al, 2013), CEN was made excitable in

these simulations. This was done to recreate the distinct puncta

observed in the trailing band of the propagating wave. Compared

to STEN, the major difference in CEN was in the epsilon term,

which was significantly larger than STEN, causing the CEN state

trajectory to be shorter in phase space as illustrated in Fig 2E. This

also ensured that CEN activity was contained in space and did not

spread in the form of a wave. The threshold of CEN was adjusted

through three parameters: one, the strength of the autocatalytic

feedback loop (parameter a3c) as in Appendix Fig S3J (PKBA, green

activator nullcline); two, the slope of the inhibitor nullcline (pa-

rameter c1c) as in Appendix Fig S3K (RacGEF1, green inhibitor

nullcline); and three, the self-degradation term of the CEN activa-

tor (parameter a1c), as in Appendix Fig S3K (RacGEF1, green acti-

vator nullcline). A sufficiently large stochastic input was added to

CEN so that all points oscillated randomly as reported earlier in

the literature (Huang et al, 2013). The coupling from STEN to CEN

was incorporated through the sin term, where sin = sc(RS � R0). An

input from STEN (RS) causes the CEN activator nullcline to be

raised vertically as shown in Fig 2F, dramatically reducing thresh-

old and forcing the CEN trajectory to follow the STEN input

(Fig 2G—left). If the decay of the STEN input was drastically

slowed (Appendix Fig S2A), the subsequent CEN firings occurred

at this high basal level.

On the down-stroke of the STEN input, the CEN nullcline starts

to descend along with the CEN state. This creates a brief refractory

period (Fig 2G—middle). If the down-stroke is fast enough

(Appendix Fig S2B), the refractory period is sustained and CEN

cannot fire again. For an intermediate down-stroke (Fig 2F), soon

the state catches up to the nullcline and fires stochastically creat-

ing a second peak (Fig 2G—right). Note that this second peak is

higher than the basal level of CEN firings (Fig 2F) but lower than

the first peak.

The STEN-CEN firings translated to propagating waves in space

because of the diffusion terms in the above equations. The output

readouts were taken from the inhibitors of both modules, scaled

and normalized uniformly. Diffusion was simulated through

discretizing the simulation space using the central-difference

approximation. All simulations were carried out using the SDE tool-

box of MATLAB (Picchini, 2007). The simulations introducing wave

characteristics in Fig 3 were carried out on a finer 1D grid

(3,000 × 1) for a proof-of-principle purpose. The rest of the results

were simulated on a coarser grid (200 × 200 in 2D). Parameters for

each simulation are provided in Appendix Table S1.

Feedback from CEN to STEN

Feedback from the cytoskeletal to the signaling network consisted of

fast, local positive feedback (ZC), and slow, global negative feed-

back (WC). As previously shown, these complementary loops can

explain several aspects of cytoskeleton-dependent cell polarity

(Huang et al, 2013; Shi et al, 2013). This feedback was coupled with

a stochastic component to account for cytoskeletal fluctuations.

These were set up as follows:

@ZC

@t
¼ DZc

r2ZC � p1ZC þ p2FC

@WC

@t
¼ DWc

r2WC � p3WC þ p4FC

The input to the feedback module was from CEN activator

component (FC). This caused the positive feedback to essentially

mimic the CEN activator. The negative feedback, however,

remained at a low unless there was long-lived activation of the

whole cell—as in the RacGEF1 case (Appendix Fig S3K). To simu-

late the global nature of the inhibitor, its diffusion constant was

chosen to be sufficiently large such that WC is spatially independent.

The strength of the negative feedback in steady-state is assumed to

be twice that of the positive feedback.

Wave characteristics, threshold, and dispersion

The dependence of wave speed on threshold has typically been

analyzed using singular perturbation theory, in which case a

formula for wave speed is available and valid in the singular limit

(i.e., e = 0; Tyson & Keener, 1988). For the simulations shown in

Fig 3, e was chosen to be 0.03, and so, the Rstop values obtained

analytically and through simulations were similar. For higher values

of e, as long as the system remained excitable, the fact that the wave

is faster at a lower threshold was valid (Appendix Fig S3H).

Unlike neuronal excitable waves that propagate with little damp-

ing, cellular waves stop after traversing a certain distance on the

cortex. The mechanism of wave stopping that we analyzed in Fig 3 is

similar to the notion of wave-pinning reported earlier in the literature

(Mori et al, 2008) for bistable systems. A wave is triggered at a

certain inhibition level, and it starts to propagate. For this wave to

naturally stop, the level of inhibition must continually rise in space

(so as to reach Rstop) as the wave propagates by triggering adjacent

elements. To achieve this, Mori et al suggest that the diffusion coeffi-

cient of the inhibitor must be significantly greater than that of the

activator. In fact, wave stopping can be reached if the molecular

dispersion of the inhibitor is greater than that of the activator. Molec-

ular dispersion (the square root of the product of diffusion coefficient

and lifetime) can be greater for the inhibitor even for a smaller diffu-

sion coefficient as the inhibitor is inherently longer-lived than the

activator (resulting in the refractory period). It is the time delay

between the two that allows the activator to spread further initially.

Thus, wave stopping can still be achieved for lower diffusion of the

inhibitor in space, provided its dynamics is made faster in time.

Overall, for wave stopping, the combination of diffusion and

time delay of the inhibitor must be such that a zero wave speed situ-

ation is possible (Dockery et al, 1988; Dockery & Keener, 1989;

Kessler & Levine, 1989). In Fig 3, a large time delay (small e) is

chosen and that necessitates a larger diffusion coefficient for the
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inhibitor as compared to the activator. However, even for a lower

diffusion of the inhibitor, wave stopping can still be achieved by

decreasing the delay—provided the system remains excitable. Thus,

the effect of threshold on wave stopping is visible for a range of

values for diffusion coefficients and time delays (Appendix Fig S3H)

as long as the parameters are such that the inhibitor can catch up to

the activator. For both low diffusion coefficient and large time delay

of the inhibitor, the wave will spread indefinitely.

Level set simulations

To determine the effect of these changes on morphology, we simu-

lated cell behavior using level set methods (LSM), as previously

described (Yang et al, 2008; Miao et al, 2017), where the cell bound-

ary is defined as the zero level set of a signed distance function.

The cell is then subjected to stresses obtained from the wave simu-

lations. Activity obtained from these simulations was converted to

forces normal to the membrane. We use a viscoelastic model of the cell

to determine the local velocity of the level set. Specifically, we used:

_xmem ¼ � K=Dð Þxcor þ 1=Dþ 1=Bð Þrtot

_xcor ¼ � K=Dð Þxcor þ 1=Dð Þrtot

where rtot is the stress applied on the cell, xmem and xcor are the

local displacements of the membrane and cortex, respectively, and

K, D, and B are viscoelastic components of the cell describing the

elasticity (K) and viscosity (D) of the membrane, and the viscosity

of the (B) of the cytoplasm. The total stress applied to the cell

incorporated the effects of surface tension, volume conservation,

and external forces. The values of the parameters used are

provided in Appendix Table S1.

Expanded View for this article is available online.

Acknowledgements
The authors would like to thank all members of the Devreotes and Iglesias

laboratories as well as members of T. Inoue, M. Iijima, and D. Robinson labora-

tories (Johns Hopkins University) for helpful suggestions. We sincerely thank A.

Kortholt (U of Groningen, the Netherlands), P. Charest (U of Arizona), TJ Jeon

(Chosun U, South Korea), and R. Firtel (UCSD) for kindly sharing constructs.

This work was supported by NIH grant R35 GM118177 (to P.N.D.), AFOSR MURI

FA95501610052, DARPA HR0011-16-C-0139, as well as NIH Grant S10

OD016374 (to S. Kuo of the JHU Microscope Facility).

Author contributions
YM designed and performed a majority of experiments; SB conducted all

computational simulations; TB, BA-S, and YL contributed to experiments; YM,

SB, and PAI analyzed the data; and YM, SB, PAI, and PND wrote the manuscript

with inputs from TI.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Arai Y, Shibata T, Matsuoka S, Sato MJ, Yanagida T, Ueda M (2010) Self-

organization of the phosphatidylinositol lipids signaling system for

random cell migration. Proc Natl Acad Sci USA 107: 12399 – 12404

Bement WM, Leda M, Moe AM, Kita AM, Larson ME, Golding AE, Pfeuti C, Su

K-C, Miller AL, Goryachev AB, von Dassow G (2015) Activator–inhibitor

coupling between Rho signalling and actin assembly makes the cell cortex

an excitable medium. Nat Cell Biol 17: 1471

Bhattacharya S, Iglesias PA (2018a) Controlling excitable wave behaviors

through the tuning of three parameters. Biol Cybern DOI: 10.1007/

s00422-018-0771-0

Bhattacharya S, Iglesias PA (2018b) The threshold of an excitable system

serves as a control mechanism for noise filtering during chemotaxis. PLoS

One 13: e0201283

Bretschneider T, Anderson K, Ecke M, Müller-Taubenberger A, Schroth-Diez B,

Ishikawa-Ankerhold HC, Gerisch G (2009) The three-dimensional dynamics of

actin waves, a model of cytoskeletal self-organization. Biophys J 96: 2888 – 2900

Case LB, Waterman CM (2011) Adhesive F-actin waves: a novel integrin-

mediated adhesion complex coupled to ventral actin polymerization. PLoS

One 6: e26631

Charest PG, Shen Z, Lakoduk A, Sasaki AT, Briggs SP, Firtel RA (2010) A Ras

signaling complex controls the RasC-TORC2 pathway and directed cell

migration. Dev Cell 18: 737 – 749

Deneke VE, Di Talia S (2018) Chemical waves in cell and developmental

biology. J Cell Biol 217: 1193 – 1204

Devreotes PN, Bhattacharya S, Edwards M, Iglesias PA, Lampert T, Miao Y

(2017) Excitable signal transduction networks in directed cell migration.

Annu Rev Cell Dev Biol 33: 103 – 125

Dockery JD, Keener JP, Tyson JJ (1988) Dispersion of traveling waves in the

belousov-zhabotinskii reaction. Physica D 30: 177 – 191

Dockery JD, Keener JP (1989) Diffusive effects on dispersion in excitable

media. SIAM J Appl Math 49: 539 – 566

Fets L, Nichols JME, Kay RR (2014) A PIP5 kinase essential for efficient

chemotactic signaling. Curr Biol 24: 415 – 421

Fife PC (1984) Propagator-controller systems and chemical patterns. In Non-

equilibrium dynamics in chemical systems: Proceedings of the International

Symposium, Bordeaux, France, September 3–7, 1984, pp 76– 88. Berlin: Springer

Fort L, Batista JM, Thomason PA, Spence HJ, Whitelaw JA, Tweedy L, Greaves

J, Martin KJ, Anderson KI, Brown P, Lilla S, Neilson MP, Tafelmeyer P,

Zanivan S, Ismail S, Bryant DM, Tomkinson NCO, Chamberlain LH, Mastick

GS, Insall RH et al (2018) Fam49/CYRI interacts with Rac1 and locally

suppresses protrusions. Nat Cell Biol 20: 1159 – 1171

Gerhardt M, Ecke M, Walz M, Stengl A, Beta C, Gerisch G (2014) Actin and

PIP3 waves in giant cells reveal the inherent length scale of an excited

state. J Cell Sci 127: 4507 – 4517

Gerisch G, Ecke M, Wischnewski D, Schroth-Diez B (2011) Different modes of

state transitions determine pattern in the Phosphatidylinositide-Actin

system. BMC Cell Biol 12: 42

van Haastert PJM, Keizer-Gunnink I, Kortholt A (2017) Coupled excitable Ras

and F-actin activation mediates spontaneous pseudopod formation and

directed cell movement. Mol Biol Cell 28: 922 – 934

Hecht I, Kessler DA, Levine H (2010) Transient localized patterns in noise-

driven reaction-diffusion systems. Phys Rev Lett 104: 158301

Holmes WR, Carlsson AE, Edelstein-Keshet L (2012) Regimes of wave type

patterning driven by refractory actin feedback: transition from static

polarization to dynamic wave behaviour. Phys Biol 9: 046005

Huang C-H, Tang M, Shi C, Iglesias PA, Devreotes PN (2013) An excitable

signal integrator couples to an idling cytoskeletal oscillator to drive cell

migration. Nat Cell Biol 15: 1307 – 1316

Kamimura Y, Xiong Y, Iglesias PA, Hoeller O, Bolourani P, Devreotes PN (2008)

PIP3-independent activation of TorC2 and PKB at the cell’s leading edge

mediates chemotaxis. Curr Biol 18: 1034 – 1043

ª 2019 The Authors Molecular Systems Biology 15: e8585 | 2019 19 of 20

Yuchuan Miao et al Cortical waves organize cell protrusions Molecular Systems Biology

Published online: March 11, 2019 

https://doi.org/10.15252/msb.20188585
https://doi.org/10.1007/s00422-018-0771-0
https://doi.org/10.1007/s00422-018-0771-0


Keener JP (1980) Waves in excitable media. SIAM J Appl Math 39: 528 – 548

Kessler DA, Levine H (1989) Effect of diffusion on patterns in excitable

Belousov-Zhabotinskii systems. Available at: https://deepblue.lib.umich.edu/

handle/2027.42/27721

Krause M, Gautreau A (2014) Steering cell migration: lamellipodium dynamics

and the regulation of directional persistence. Nat Rev Mol Cell Biol 15:

577 – 590

Li X, Edwards M, Swaney KF, Singh N, Bhattacharya S, Borleis J, Long Y, Iglesias

PA, Chen J, Devreotes PN (2018) Mutually inhibitory Ras-PI(3,4)P2 feedback

loops mediate cell migration. Proc Natl Acad Sci USA 115: E9125 – E9134

Mahankali M, Peng H-J, Cox D, Gomez-Cambronero J (2011) The mechanism

of cell membrane ruffling relies on a phospholipase D2 (PLD2), Grb2 and

Rac2 association. Cell Signal 23: 1291 – 1298

Marchesin V, Montagnac G, Chavrier P (2015) ARF6 promotes the formation

of Rac1 and WAVE-dependent ventral F-actin rosettes in breast cancer

cells in response to epidermal growth factor. PLoS One 10: e0121747

Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and

cellular functions. Nat Rev Mol Cell Biol 9: 446 – 454

Meinhardt H, de Boer PA (2001) Pattern formation in Escherichia coli: a

model for the pole-to-pole oscillations of Min proteins and the

localization of the division site. Proc Natl Acad Sci USA 98: 14202 – 14207

Mejillano MR, Kojima S-I, Applewhite DA, Gertler FB, Svitkina TM, Borisy GG

(2004) Lamellipodial versus filopodial mode of the actin nanomachinery:

pivotal role of the filament barbed end. Cell 118: 363 – 373

Miao Y, Bhattacharya S, Edwards M, Cai H, Inoue T, Iglesias PA, Devreotes PN

(2017) Altering the threshold of an excitable signal transduction network

changes cell migratory modes. Nat Cell Biol 19: 329 – 340

Mori Y, Jilkine A, Edelstein-Keshet L (2008) Wave-pinning and cell polarity

from a bistable reaction-diffusion system. Biophys J 94: 3684 – 3697

Park KC, Rivero F, Meili R, Lee S, Apone F, Firtel RA (2004) Rac regulation of

chemotaxis and morphogenesis in Dictyostelium. EMBO J 23: 4177 –4189

Picchini U (2007) SDE Toolbox: simulation and estimation of stochastic

differential equations with MATLAB. Available at: http://lup.lub.lu.se/record/

4216230[Accessed June 28, 2018]

Richardson KA, Schiff SJ, Gluckman BJ (2005) Control of traveling waves in

the mammalian cortex. Phys Rev Lett 94: 028103

Sakurai T, Mihaliuk E, Chirila F, Showalter K (2002) Design and control of

wave propagation patterns in excitable media. Science 296: 2009 – 2012

Shi C, Huang C-H, Devreotes PN, Iglesias PA (2013) Interaction of motility,

directional sensing, and polarity modules recreates the behaviors of

chemotaxing cells. PLoS Comput Biol 9: e1003122

Showalter K, Tyson JJ (1987) Luther’s 1906 discovery and analysis of chemical

waves. J Chem Educ 64: 742

Tanabe Y, Kamimura Y, Ueda M (2018) Parallel signaling pathways regulate

excitable dynamics differently to mediate pseudopod formation during

eukaryotic chemotaxis. J Cell Sci 131: jcs214775

Taniguchi D, Ishihara S, Oonuki T, Honda-Kitahara M, Kaneko K, Sawai S

(2013) Phase geometries of two-dimensional excitable waves govern self-

organized morphodynamics of amoeboid cells. Proc Natl Acad Sci USA 110:

5016 – 5021

Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc

Lond B Biol Sci 237: 37 – 72

Tyson JJ, Keener JP (1988) Singular perturbation theory of traveling waves in

excitable media (a review). Physica D 32: 327 – 361

Veltman DM, Williams TD, Bloomfield G, Chen B-C, Betzig E, Insall RH, Kay

RR (2016) A plasma membrane template for macropinocytic cups. Elife 5:

e20085

Vicker MG (2002) Eukaryotic cell locomotion depends on the propagation of

self-organized reaction-diffusion waves and oscillations of actin filament

assembly. Exp Cell Res 275: 54 – 66

Weiner OD, Marganski WA, Wu LF, Altschuler SJ, Kirschner MW (2007) An

actin-based wave generator organizes cell motility. PLoS Biol 5: e221

Winans AM, Collins SR, Meyer T (2016) Waves of actin and microtubule

polymerization drive microtubule-based transport and neurite growth

before single axon formation. Elife 5: e12387

Wu M, Wu X, De Camilli P (2013) Calcium oscillations-coupled conversion of

actin travelling waves to standing oscillations. Proc Natl Acad Sci USA 110:

1339 – 1344

Xiong Y, Huang C-H, Iglesias PA, Devreotes PN (2010) Cells navigate with a

local-excitation, global-inhibition-biased excitable network. Proc Natl Acad

Sci USA 107: 17079 – 17086

Xiong D, Xiao S, Guo S, Lin Q, Nakatsu F, Wu M (2016) Frequency and

amplitude control of cortical oscillations by phosphoinositide waves. Nat

Chem Biol 12: 159 – 166

Yang L, Effler JC, Kutscher BL, Sullivan SE, Robinson DN, Iglesias PA (2008)

Modeling cellular deformations using the level set formalism. BMC Syst

Biol 2: 68

Yang Y, Xiong D, Pipathsouk A, Weiner OD, Wu M (2017) Clathrin assembly

defines the onset and geometry of cortical patterning. Dev Cell 43:

507 – 521.e4

License: This is an open access article under the

terms of the Creative Commons Attribution 4.0

License, which permits use, distribution and reproduc-

tion in any medium, provided the original work is

properly cited.

20 of 20 Molecular Systems Biology 15: e8585 | 2019 ª 2019 The Authors

Molecular Systems Biology Cortical waves organize cell protrusions Yuchuan Miao et al

Published online: March 11, 2019 

https://deepblue.lib.umich.edu/handle/2027.42/27721
https://deepblue.lib.umich.edu/handle/2027.42/27721
http://lup.lub.lu.se/record/4216230
http://lup.lub.lu.se/record/4216230

