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We provide a theoretical explanation for the observation that in many sensory 
systems a step increase in stimulus triggers a response that goes through a maximum 
and then returns to the basal level. Considered here is a receptor molecule that in 
the absence of ligand can be found in either of two states R and D. Two more 
states, RL and DL, are formed upon the addition of ligand L. It is assumed that 
the receptor triggers activity in a sensory system, and that the activity is proportional 
to a weighted combination of the fractions of molecules that are in each of the four 
states. It is shown that judicious choice of the weights can provide both an adequate 
response and exact adaptation to step increases in stimuli. The interconversion 
between states may operate without energy expenditure or through covalent 
modification. In both cases, adaptation is associated with receptor modification that 
acts as a counterweight to changed external conditions. Application to cAMP 
secretion in Dictyostelium discoideum and to chemotaxis in bacteria is discussed. 

1. Introduction 

M a n y  sensory systems have evolved the proper ty  o f  adap ta t ion  to external stimuli. 
Whenever  a st imulus is increased the physiological  response  goes th rough  a 
m a x i m u m  and  then returns to pre-stimulus behavior  despite the con t inued  presence 
o f  the external  signal. Such an eventual a t tenuat ion or  even nullification o f  the effect 
o f  the changed  condi t ions  must  be associated with an internal modif icat ion o f  the 
responding  system (Koshland ,  1980). 

We shall concent ra te  ou r  at tention on sensory systems in single cells. One  well 
s tudied case involves adap ta t ion  o f  swimming behavior  in bacter ia  to changes  in 
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the cells' chemical environment (Adler, 1978; Koshland, 1979; Macnab, 1980). These 
bacteria normally swim in a fairly straight line for some time, by virtue of their 
flagellar rotation. They then go through a brief period of uncoordinated flagellar 
action called tumbling after which they are randomly reoriented for the next period 
of straight line swimming. Positive chemotaxis, motion toward attracting chemicals, 
is achieved by a reduction in tumbling frequency. It has been found that if the 
concentration of an attractant is elevated in a spatially uniform fashion and then 
held constant, the tumbling frequency is reduced for a time but eventually returns 
to its original value. The molecular mechanism of this adaptation is known in 
considerable detail; it is connected with the methylation of a receptor molecule that 
is specific for the attractant under consideration (Springer & Koshland, 1977; 
Parkinson & Revello, 1978; Goy et al., 1979; Russo & Koshland, 1983). 

Another adapting system occurs in the cellular slime mold Dictyostelium dis- 
coideum. Cells synthesize cyclic AMP (cAMP) upon binding of extracellular cAMP 
to a membrane receptor. This synthesis is the central element in an intercellular 
signalling system that plays a key role in the cells' morphogenetic movements and 
subsequent differentiation (Loomis, 1975; Devreotes, 1982; Gerisch, 1982). When 
the extracellular cAMP concentration is raised to a higher constant value, the 
intracellular cAMP synthesis passes through a maximum before returning to its 
pre-stimulus level (Dinauer et al., 1980a, b). It is not yet certain whether this 
adaptation is connected with some receptor modification, although there is consider- 
able evidence favoring this view (Klein, 1979; Juliani & Klein, 1981; Lubs-Haukeness 
& Klein, 1982; Klein et al., 1984, 1985; Devreotes & Sherring, 1985). 

Adaptation of cAMP-induced cGMP synthesis has also been demonstrated in D. 
discoideum ivan Haastert & Van der Heijden, 1983). Adaptation at the level of 
single cells occurs in other sensory systems such as hormone stimulated adenylate 
cyclase (Su et al., 1980; Stadel et al., 1983), light activated rod outer segments (Kiihn, 
1981), mechano-sensitive hair cells in the inner ear (Hudspeth, 1983) and acetylcho- 
line receptors in the neuromuscular junction (Katz & Thesleff, 1957). Varying degrees 
of evidence suggest that in these cases too adaptation is a consequence of receptor 
modification. 

Various investigators have proposed mechanisms for how adaptation can be 
brought about by receptor modification (see Discussion). The purpose of this paper 
is to present a new possible form of exact adaptation via receptor modification, for 
which the adapting quantity is a linear combination of receptor states. Although 
each of these states depends in a fairly complex way on the stimulus concentration, 
we obtain the counterintuitive result that there exists a class of linear combinations 
whose steady state is independent of the stimulus level. This permits exact adaptation. 
We show how the model also can account for other properties of sensory systems 
such as dependence of adaptation time and extent of receptor modification on 
stimulus level, recovery after removal of stimulus, and additivity of responses to 
successive stimuli. We propose ways to implement the model in molecular terms 
and we discuss briefly how predictions of the model conform with experimental 
data concerning cAMP secretion in D. discoideum and chemotaxis in bacteria. More 
detailed comparison of theory and experiment can be found in Knox et al. (1986). 
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2. The Model  

T H E  A D A P T I N G  B O X  

Our model for an adapting receptor is based on the classical notion (Katz & 
Theslett, 1957) that in the absence of ligand the receptor can be found in either of 
two states. We denote these states (and their concentrations) by R and D. Each of 
these states can bind a ligand L, in which case they are denoted respectively by X 
(=-- RL)  and Y (-- DL) .  The  states R and D, as well as X and Y, can be interconverted. 
Figure 1 depicts the four states together with the rate constants that are associated 
with the various binding and interconversion steps. 

The following kinetic analysis holds when interconversion occurs by conforma- 
tional changes or by covalent modification. 

K I N E T I C S  

The kinetic equations are 

d R /  d t  = - k ~ R  + k _ ~ D -  krR x L +  k _ , X  (la) 

d X  / d t  = - k 2 X  + k-2 Y +  krR x L -  k _ r X  (lb) 

d Y / d t  = kEX - k-2 Y + kdD x L -  k - d Y  (lc) 

d D / d t  = k~R - k_~D - kaD x L +  k-dY.  (ld) 

Addition of these equations gives 

R + X +  Y + D = R - r  (2) 

where the constant Rr represents the total amount of receptor. 
We assume that the binding steps R c : ~ X  and D¢O Y are fast compared to the 

other two steps. Suppose that the system (1) is stimulated by shifting the ligand 
concentration L from zero to some fixed value L1. Then, after an initial transient, 
the fast steps will attain equilibrium, i.e. 

R x L1 = KRX, D × LI = K o Y  (3) 

where 

With the abbreviations 

KR =--- k_ , / k , ,  KD = k - d / k a .  (4) 

3 ̀=- L1/KR,  

the equilibrium relations (3) become 

R=Xl% 
Substitution of (6) into (2) yields 

R r  = OX + ~b Y, 

c =- K R / K o  (5) 

D = Y/c'y.  (6) 

(7a) 
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where 

0 = 1 + 3, -I ,  ~b = 1 + (c3") -1. (7b)  

The "quasi-steady state" relations (6) and (7) will hold for all times after the initial 
transient. 

The values of the concentrations just after the fast transient can now be obtained, 
once it is realized that during the transient period R will interchange with X only, 
and D only with Y. Thus, during this period, 

R(t)+X(t)  = Ro, D(t)+ Y(t) = Do 

where Ro and Do are the concentrations of R and D in the unstimulated system 
(see (16)). It follows that during the fast transient 

X(t)-~ 3' Ro, R(t)-~ 1 Ro, Y(t)~ c3" Do, 
1+3" 1+3' 1+c3' 

(8) 
1 

D(t)~ Do. 
1 +c3" 

TO study the slow interconversions we add (la) and (lb), obtaining an equation 
with only slow rate constants (see Appendix 1) 

d 
-~[ R + X] = -kIR + k_ID - k2X + k-2 Y. (9), 

Employing (6) and (7) (which are valid after the initial fast binding step) to eliminate 
all variables except X, we find 

dX 
dt V -  WX (10) 

where the constants V and W are given by 

,,.., .I W= 0--1('~'+~2)+ I~--l(k_2"t'--~l). (11a, b) 

The solution of (10) is 

where 

x xV)o  (12a) 

X~ = ROT/(1 + T) (12b) 

is the value of X at the end of the fast transient period. Let .~ denote the asymptotic 
value of X when L is held at the value LI. This value, V~ IV, can be written 

RT3" r ki+k23" ] I + c T  (13a, b) 
X(Y) = Q(1 + 3')' Q - l + k ' k - T ~ - 2 c y J  1+3'" 
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The kinetic behavior of  the other concentrations can be found from (7) and (6). 
In particular the other asymptotic steady state values for L = L1 are given by 

/~(3,) = g r  9 (3 , )=  c_____7__~Q-1Rr" / ) ( 3 Q = Q - 1  RT (14a, b ,c )  
Q ( l + 7 ) '  l + c y  Q Q 1+c3," 

R E C E P T O R  A C T I V I T Y  A N D  P H Y S I O L O G I C A L  R E S P O N S E  

We now make the hypothesis that the "activity" A generated by our system is 
given by a linear combination of  the concentrations in each of  the four receptor states 

A(t) = aiR(t)  + a2X(t) + a3 Y(t)  + a4D(t). (15a) 

For  the time being, "activity" should be regarded as a loose measure of  how strongly 
ligand binding to the receptor is contributing to the induction of  the physiological 
response. Later we show how (15a) could be implemented and linked to a physiologi- 
cal response, for example by differential binding of  an intracellular signalling 
molecule. In this case the ai are association constants and hence are non-negative. 
We thus assume 

a s - 0 ,  i =  1 ,2 ,3 ,4 .  (15b) 

We stress the distinction between the activity of  the receptor states and a selected 
physiological response controlled by the receptor. We assume that the response is 
a function of  the activity that is defined by (15a). This function incorporates the 
molecular events that link the receptor state to the final response. We show later 
that under reasonable assumptions (e.g. that the concentration of  the signalling 
molecule is sufficiently small) possible molecular implementations of  (15a) yield 
expressions for response as a function of  activity. 

The activity coefficients ai (Fig. 1) represent the relative contributions of the four 
receptor states to the overall activity. The basal activity obtains when the system is 

0 t 04 
kl ~ ~ - ~  

k- 2 
a 2 03 

FIG. 1. Model for the sensory system based on receptor modification, showing the four states of the 
receptor and the rate constants for binding of ligand L and for interconversion. The activity coefficients 
aj associated with each receptor state (see eqn (15a)) are also shown.  
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unstimulated (L = 0, i.e. y = 0). Zero subscripts denote the steady state concentra- 
tions in this case. The combination of (13) and (14) with y = 0, Q = 1 + K~ -~ gives 

Rr  K~ -1 
Xo=0,  Yo=0, R o -  1 + K~_----~, Do=I+K_f-----~Rr. (16) 

Here 
K1 -- k_l/kl. (17) 

Thus, from (15), the basal activity Ao is 

Ao = atRo + a4Do = Ro[ al + a4K-f 1] = Rr [ a~K~ + a4]. (18a) 
I+K~  

It will prove useful to introduce B =-- Ao/RT, the basal activity per mole of receptor. 
The following are two easily verified identities 

a~k_~+a4kl a~-B a4-B  
B -  k - l + k l  ' kl k_l (18b, c) 

We define the initial activity AM as the activity that is generated very shortly after 
the system is subjected to a concentration L~ of activator, i.e. just when the equi- 
librium relations (6) have been established but before there has been a shift between 
the states R -  X and D -  Y. Using a subscript "one"  to denote the concentrations 
that correspond to the initial activity, we find from (8) and (16) that 

. (19) R0 X~ = Ro, Y~ - K t ( l +  cy) '  D~ K l ( l +  cy) 
c ' y R  o Ro 

R l = l + y ,  

The initial activity, AM, obtains when the values from (19) are substituted into 
(15a). To find the net initial activity we subtract the basal activity Ao from the initial 
activity AM 

[ y _~(a3-a4______~) cy ] (20a) 
A M - A ° = R °  ( a 2 - a l ) 1 + 7  K1 l ~ c y  " 

In the case c = 1, (20a) can be written 

Y (20b) AM - A o  = [ (a2-  a~)Ro+ ( a3 -  a4)Do] 1 + 7" 

This formula has a clear interpretation: the peak gain in activity is the sum of the 
individual gains in activity obtained when binding shifts R to X and D to Y, to 
an extent given by the receptor occupancy 7/(1 + 7). When c # 1, the two sides of 
the box must be differently weighted. 

EXACT ADAPTATION 

Our basic idea is to choose the coefficients al of (15a) so that the final steady 
state activity is equal to the basal activity for all values of L~ (i.e. for all values of 
7) 

a~/~ (7) + a2.g (7) + a3 Y(7) + a4/3(7) = Ao. (21) 

The ai's must also be chosen such that the net initial activity AM -- Ao is significant. 



MECHANISM FOR EXACT ADAPTATION 157 

Since response is a function of activity, (21) ensures that response will always 
return to the same value at steady state. (It can be shown that the slow shift of  
activity from AM to basal is monotonic, via a single exponential. See Appendix 1.) 

In an effort to write (21) in a relatively simple form we note from (13b) that 

Q - I  k~+ k2y 1 (l+y)(k_~+k_2cy) 
l + c y  (k_~+k_2cy)(l+y)' Q Q2(y) (22) 

where 

Q2('y) ---- (k-1 q- k-2cT)(1 + T) -t- (k, + k2y)(1 + c7) (23) 

is a quadratic function of  y. Thus, for example, the expression for ~" can be written 
compactly as 

~'( y) = CyRT( kl + k2y)/O2(y). 

It thus turns out that (21) implies that 

(al + a2y)(k_~ + k_ECy) + (a3cy + a4)(ki + k2y) = AoQ2(T)/RT. (24) 

The problem, then, reduces to the selection of  the four activity coefficients so that 
the quadratic expression for y on the left side of (24) is identical to the quadratic 
AoQ2(y)/Rr. Equating in turn the quadratic, linear, and constant terms on the two 
sides of (24) we obtain the identity 

alk-l + a4kl = alk-i + a4kt (25a) 

together with the equations 

• _ . al k-1 + a4kl (25b) a2k-I+alk-2c+a3klc+a4k2=(k-~+k-2c+k~ctic2) ~- l+kl  ' 

a2k-2 + a3k2 = (k-2 + k2) al~-ll ++ kla4kl (25c) 

Equation (25c) can be written as 

a2K2+a3 alKl+a4 
- (26a) 

/(2+1 K l + l  

or in terms of  the quantity B of (18b) 

a2 - B a 3 - B 
. . . .  (26b) 

k2 k-2 

Again employing B we can write (25b) in the form 

(k2k-~-ck, k-2)[a2~ B a,--B 1 k~ j = 0 .  (27) 

APPLICATION OF MICROSCOPIC REVERSIBILITY 

When the modification of  the receptor, shown in Fig. 1, is such that k,, k_~ and 
k2, k_ 2 relate to the forward and backward steps of the reversible interconversion 
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of R into D and of X into Y, the principle of microscopic reversibility holds for 
the "'box". (See for example, Wyman, 1975.) Employing this principle, and using 
the definition of c in (5), we find that 

k~kak-2k-, = k-lk-ak2kr, i.e. k_lk2 = kak_2c (28) 

o r  

K1 = K2c where/(2 ~- k-2/k2. (29) 

In particular, the term in the ordinary parenthesis i'n (27) vanishes, so that only the 
single condition (26) is required to give complete adaptation to the basal value! 

As we have pointed out, it is not enough to have adaptation; a useful transducing 
mechanism must also give rise to a significant activity. We characterize the magnitude 
of the activity by the quotient of the net initial activity of (20a) divided by the basal 
activity Ao. This relative net initial activity ~(L) can be written 

a(L) "--AM-A°=(a2-al)LR°(KR+L)-1+(a3-a4)LD°(KD+L)-1 (30a) 
Ao alRo + a4Do 

A particularly simple measure of activity is c~ (00), the value of o~ that is achieved 
at saturating ligand concentration 

(a2-aORo+(a3-a4)Do a2Ro+ a3Do-Ao 
a ( o o )  - _ (30b) 

alRo + a4Do Ao 

Note that the net initial activity of (20a) can be increased by any factor merely by 
multiplying all the coefficients at by this factor. This is not the case for a(L),  which 
more suitably compares the activity of the system with the basal activity. 

We observe that there is no intrinsic difference between the left and right sides 
of the "box" in Fig. 1. This symmetry requires that the various conditions be invariant 
under the following transformation 

a2"~,a3, all->a4, Ko,,-~ KR, KI ~--> I/ Kb K2~--> l /  K2. (31) 

Indeed, the expression for a(L)  as well as the adaptation requirement (26) and the 
microscopic reversibility condition (29) are properly invariant. Later formulas have 
also been checked for suitable invariance. 

It follows from Appendix 3 that t~(oo) can be made arbitrarily large compared 
to unity by choosing 

K2<< 1, K1 >> 1, so  a2 B-! >> 1, C >> 1 (32) 

o r  

Kl<< 1, /(2>>1, so a3B-! >> 1, c<<l. (33) 

In Fig. 2(a) we display an example of the activity elicited by three different stimuli, 
showing exact adaptation in a case where (32) roughly holds. The parameters al, 
a3, and a4 are selected: then the value a2 for exact adaptation, defined as a*, is 
found from (26). 
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FIG. 2. Exact adaptation in the receptor system subject to microscopic reversibility, in response to 
three stimuli bringing 3' from zero to 0.1 (a), 1 (b) and 10 (c) respectively. Shown in panel A is the time 
evolution of the activity A relative to the basal activity A o for Kt=10,  /(2=0-1, c=100, R r = l ,  
k_ t =0.01 s -I, k_2=0.002 s -I. Three activity coefficients are arbitrarily assigned the values al =20, 
a3= 10, aa= 1; a 2 is given the value a * =  101 prescribed by condition (26) for exact adaptation. (The 
fast binding of ligand (assumed for simplicity) has been approximated so that the activity instantaneously 
rises to a maximum.) Shown in panel B are the changes in the fraction of modified receptor that 
accompany adaptation to the three stimuli. N.B. K1, K 2 and R r are multiples of any suitable reference 
concentration. 

In the case of Fig. 2(a) the activity produced by the initial formation of  the 
complex X from R is magnified by the large value of  a2. Adaptation is brought 
about by the later strong shift of X into Y due to the small value of / (2 .  Figure 
2(b) depicts the conversion of the receptor to its modified form for the same three 
stimuli applied in Fig. 2(a). Note that the conditions c >> 1, required by microscopic 
reversibility, and K2 << 1 favor tight binding of the ligand in the Y-state. 

Can our model work if some of the activity coefficients as are zero ? Consider the 
case ai = 0, a 4 = 0, wherein the basal activity Ao vanishes, by (18a). Then (26) cannot 
hold, by the positivity assumption (15b), so that exact adaptation cannot occur. 
Inspection shows, however, that all properties can be present if just one correspond- 
ing pair of free and liganded states is active--for example if a3 = a4 = 0, a~ # 0, a2 # 0. 

EXACT ADAPTATION IN THE CASE OF COVALENT MODIFICATION 

Consider situations wherein the interconversion of R into D and of X into Y 
occurs through reversible covalent modification. Our kinetic analysis remains valid 
provided that the enzymes which catalyze the modification and demodification steps 
operate in the first order kinetic domain. In this case, however, the microscopic 
reversibility constraint (29) need not be imposed on the constants of Fig. 1 (see 
Appendix 2). From (27) we see that condition (26) for exact adaptation must now 
be supplemented by 

al-_____B_ a2-_____B (34a) 
kl /(:2 

Conditions (26) and (34a) are equivalent to 

al(k2 + k-l) - a4( k2-  kl) -a l (  k - 2 -  k-l) + a4(k-2 + kl) 
(34b) 

a2 - k-1 + kl , a3 - k-i + ki 
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Combining (34a), (26b), and (18c), we obtain as the totality of requirements in this 
case 

a l  - B a 2 -  B a3  - B a 4 -  B 
. . . . . . . .  (34c) 

kl k2 k-2 k-i 

The relative net initial activity (30a) now becomes 

(at - a,,)[(k2 - kl)LRo(Kn + L) -t - (k_2 - k_,)LDo(KD + L) -~] 
a(L) - (35) 

( k_, + kl)( alRo + a4Do) 

When, for example, Kt > K2 and k_2< k-l, it follows from equations (A3.7a) and 
(A3.8) of Appendix 3 and from (34c) that maximum initial activity is attained by 
choosing the following weights 

al=B(l+klk-_~), a2=B(l+k2k-~), a3=B(1-k_2k-~),  a4=0. (36) 

If the kinetic coefficients are in suitable ranges, activity can be arbitrarily large 
(Appendix 3). 

Figure 3(a) shows examples of exact adaptation in the present case. For the 
parameters chosen, the initial change in activity occurs mainly when ligand binding 
rapidly shifts the receptor from R to X. Adaptation takes place due to the covalent 

2,5 
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8 60 

~ 40 
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0 100 200 0 1OO 200 
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FIG. 3, Exact  adaptat ion in the case o f  receptor covalent modification, for the three stimuli considered 
in Fig. 2. Parameter  values are Kt =70,  K2=0-1 ,  c =  1, R T = I ,  k_ l =0.01 s - t ,  k _ 2 = 0 . 0 0 2 s  - t .  Two 
activity coefficients are arbitrarily taken as at = 20, a4 = 1; a 2 and  a 3 are given the values a*  = 57.2 and 
a* = 16.0 prescribed by condit ions (34b) for exact adaptation.  The figure shows the time course of  the 
relative activity A / A  o in panel A and  of  the concomitant  variation in the fraction o f  modified receptor 
( Y +  D ) / R T  in panel B. 

modification of the receptor into the Y and D states, which depopulates the 
particularly active X state. Figure 3(b) depicts the time course of the receptor 
modification. The characteristic time for this modification is the same as that for 
the adaptation process. The level of receptor modification at steady state increases 
with the level of stimulus; therefore covalent modification acts as a counterweight 
to the changing external conditions. 
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I N E X A C T  A D A P T A T I O N  

The question naturally arises, particularly in connection with the possible evo- 
lution of  an adapting system, as to the extent of  adaptation in situations where 
requirement (26) is only approximately satisfied. To study this matter we define a 
deviation rl in steady state activity A by 

,~ = Ao(1 + 7/)- (37a) 

Let us suppose that there is a deviation #2 from the exactly adapting value a* of a2 

a2 = a2*(1 + 62). (37b) 

From the definition of A(t) ,  we have 

,~ = a , g  + a2..~ + a3 ~" + a,,D = ( a , R  + a* g + a3 ~z + a4D ) + 82a~ X = Ao + 82a* g,  

so that 
~1 = ( ,~/ Ao) - 1 = [(Ao+ 82a*2 .X ) / Ao] - 1 = ~2a*.X / Ao. (38) 

Hence the relation between 77 and 82 is a straight line, passing through the origin, 
with a slope (a* ,~ /Ao) .  

In the case where adaptation is brought about by covalent modification, a 3 can 
also deviate. The deviation, 7/, is given by the analogous formula 7/= 83(a3"  ~Z/Ao) 
where 83 = (a3/a*3) - 1. As illustrated in Fig. 4, in the absence of exact adaptation 
the activity can tend to a value above or below the basal level, depending on whether 
the activity coefficient is above or below the precise value required for exact 
adaptation. 

4 

3 -  

..d_z 
Ao 

2 
o c 

1 

I I 
0 100 2 0 0  

Time (s) 

FIG. 4. Exac t  vs inexac t  adap t a t i on .  The  act ivi ty  of  the sensory  sys tem is s h o w n  u n d e r  the cond i t i ons  
of  Fig. 3 for  the  s t imu lus  y = 0-* 10. Whereas  exact  a d a p t a t i o n  occurs  for a 2 = a *  = 57.197 (a) ,  inexac t  
a d a p t a t i o n  ob t a in s  for a 2 = a'2/2 (b) or a 2 = 1 .5a*  (c) wi th  a final s t eady  s ta te  ac t iv i ty  wh ich  is some 
20% be low or  above  A0, respect ively .  

A L T E R N A T I V E  D E R I V A T I O N  

Our derivation of  the equations for exact adaptation was a straightforward search 
for conditions that would permit accomplishment of  our goal. We now present an 
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alternative derivation, one that is less straightforward but that is briefer and is more 
closely related to the biophysics of the problem. 

Recall the relationship Ao = BRr between the basal activity Ao, the basal activity 
per mole of receptor B, and the total amount of  receptor Rr. Using the conservation 
requirement (2) to replace Rr  we can write our requirement that steady state activity 
is always equal to basal activity 

aiR+ a2.e~ + a3 Y+ a 4 D  = BRr 
in the form 

where 

~,~q+~X+~ ?+,LD=o 

(39a) 

(39b) 

a~ = ai - B; i = 1, 2, 3, 4. (40) 

Comparing (39a) with (39b) we see that with no loss of generality we can restrict 
consideration to a situation where basal activity is zero. Any conclusions we draw 
about the activity coefficients tii in the latter case can, by (40), at once be transformed 
into conditions on the general activity coefficients a~. 

Consider 

J= k l R - k - l D .  (41) 

From Fig. 1 we see that J is the net clockwise flux of  molecules around the box at 
steady state. At steady state the clockwise and counterclockwise fluxes must be 
equal and opposite, so that we can write, for example 

- J  = k2)( - k-2 Y.. (42) 

We solve (41) and (42) for J( a n d / ~  respectively, and insert the results in (39b). 
This yields 

- 

(43) 

The coefficient o f / 9  vanishes, by expression (18c) that relates a~ and a 4 to  the 
basal activity. At equilibrium, when microscopic reversibility holds, J also vanishes. 
In this case, therefore the sole condition for perfect adaptation is 

a2+ a3 =0 (44) 
k2 k-2 " 

In the case of  covalent modification, J is nonzero and independent of t7"(y), so that 
in addition to (44), perfect adaptation for all Y requires that 

,71 :72 
= 0. (45) 

kl k2 

Using (40), we see that (44) and (45) are equivalent to the previously derived 
conditions (26b) and (34a). Note from (34c) that in the essentially general case of 
B = 0, the four weighting coefficients are inversely proportional to the adapting 
half-lives of each of the four states. 



MECHANISM FOR. EXACT ADAPTATION 163 

3. Properties of  the Model Related to Adapting Systems 

In addition to adaptation, sensory systems are known to possess a variety of other 
dynamic and steady state properties. We examine here whether our model can 
account for such properties, emphasizing trends rather than details of particular 
experiments. We shall treat in turn (a) the dependence of the adaptation time on 
stimulus level, (b) the dependence of the extent of receptor modification at steady 
state on stimulus level, (c) the change in activity due to stimulus removal, (d) the 
additivity of activity changes brought about by successive stimuli. 

Our earlier results have been established for the elevation of the ligand concentra- 
tion L from zero to a fixed value L1. In order to carry out the program just outlined 
we have to consider the more general situation of changing L from Lt to L2. We 
stress that the conditions for exact adaptation remain unaltered, for this is a steady 
state property. 

If the ligand concentration L is held at L~, the concentrations of the receptor 
species will reach steady state values/~(y),  )~(y), Y'(y),/5(3") given by (13) and 
(14). If L is then suddenly elevated to L2, then (generalizing (8)) during the fast 
transient 

x ( o - . .  [~(3")+2(3")]=-x,(3"), where 3",= L2 (46) 
KR 

that is, 

- 1+3'  3" 

The corresponding values R~(3"), D~(3"), and Y~(3") are found from (6) and (7) 
upon replacing 3, by 3". The initial activity in this case is 

A~"" -- a, R,(3") + a2X,(3") + a~ Y~(3") + a4D~(3") 

) , 0(3")/  +a4" \ ]1+3"  +y3",3~(3")+/ a4 \  RT 
= " ~ a 2 - 1 ~ ( 3 " ) ~  a3 c3' t :J  ~ 1 ~a3--t-~-~t)---~t). (48a) 

The corresponding relative net initial activity can be found from 

et ~ "  AM'~V'-A° (48b) 
Ao 

During the slow interconversion to the final steady state, generalization of (12a) 
shows that the activity is given by 

AV-~:"(t) = Ao+ (A~ -,v'- Ao) exp [ -  W(3")t] (49) 

where W(3") is given by ( l ib)  with 3' replaced by 3". 

TIME FOR. ADAPTATION 

One of the properties of adapting systems that is most readily measurable is the 
time required for adaptation. The simplest theoretical expression that characterizes 
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this time is the half-time tl/2. From (49) it follows that i l l  2 = In 2/W, or 

(ln 2)(1 + 3,)(1 +c3,) 
h/2(3,) = (1 + c3,)(kl + k23,) + (1 + 3,)(k_, + k_2c3,)" (50) 

Note from (49) that because of our assumption of fast ligand binding, the adaptation 
time tl/2 to a new stimulus level is independent of the initial level of  stimulus, i.e. 
in notation like that of  (48) and (49), 

i v ' - '  v _  ~0--V 1/2 - ,1/2 where t°72 v -  tl/2(3,). (51a, b) 

Of particular interest are the two limiting values of t]/2, occurring for small and 
saturating stimuli 

In 2 In 2 
lim t l / 2 (3 , )  = lim t l /2 (3 ,  ) (52a, b) 
~-,o k l+k- l '  v~oo = k2+k-2" 

From (51a) it follows that (52a) also gives the half-time for adaptation when the 
stimulus level is decreased to zero from any initial value. Depending on the relative 
size of  kl + k_l and k2+ k - 2 ,  the model provides either an overall increase or decrease 
in response time with increasing stimulus (see Figs 2 and 3) and a smaller or larger 
half-time for deadaptation as compared to adaptation. We note in the case of 
covalent modification that the conditions that favor large activity (see (A.3.11)) also 
favor a decrease in recovery time with increasing stimulus and hence faster adapta- 
tion than deadaptation. (See Appendix 3 for further comment.) 

It is also possible to choose parameters such that tl/2(3,) as given in (50) is 
independent of 3,. Proceeding in the same fashion as we did in deriving the conditions 
(25) we find that tl/2 is indeed independent of  stimulus level if and only if 

c = l  and k~+k_l=k2+k_2 (53) 

o r  

kl=k2 and k - l=k-2 .  (54) 

In the latter case, however, K~ = K2 and there is no response. (See Appendix 3.) 
Another feature of  interest is additivity in response times. By this is meant that 

the time for the response to recover from elevation in ligand concentration from 0 
to L~ plus the corresponding time for a further elevation to L 2 equals the time to 
recover from an elevation in L from 0 to L2. In terms of half-times this would 
require that 

to--~ + t ~ - ~  _ to--~2 (55) 1/2 1/2 - -  1 / 2 "  

But it follows from (51) that the activity half-times cannot reproduce the additivity 
property. It is quite possible that a rough additivity would be found if the recovery 
time were defined as the time for response to approach within some small fraction 
of the final value (as considered by Goldbeter & Koshland, 1982), but we shall not 
pursue this matter further. There is also the possibility that if physiological response 
is not proportional to activity (see Discussion) the time course of  the response is 
not simply related to the time course of  activity. 
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E X T E N T  O F  R E C E P T O R  M O D I F I C A T I O N  

Another experimentally measurable quantity is the dependence on receptor 
occupancy of the extent of receptor modification at steady-state. From (14), the 
fraction of  occupied receptor at steady state is 

X + Y  1 [  3, .t (Q-l_)_)cy]. (56) 
Rr  Q L I + y  l + c y  3 

In general this expression is the quotient of two quadratics in y and thus has a 
non-Michaelian character. We will restrict our discussion to the case when c = 1, 
so that 

" g + ~ ' =  Y . (57) 
Rr  l + y  

Then binding is Michaelian with half-saturation when y = 1. 
When c = 1, the increase in the fraction of  modified receptor at steady state is 

given by 

E)+ Y - D o  [k2(k_,+k,)-k ,(k-2+k2)] 3, (58) 
Rr -[." . l(k_,+k,)/(k2+k_2)+y 

m 

Like (57), this expression is Michaetian. When appropriately normalized to their 
maximum, the graphs of  (57) and (58) coincide if their half-saturation constants 
are identical, that is if 

kl + k_l = k2 + k_~. 

By (53) this condition also guarantees that half-times for adaptation are independent 
of the .stimulus level. Furthermore, comparison of (57) and (58) indicates a link 
between adaptation time and receptor modification. If the time course for adaptation 
is an increasing (decreasing) function of  stimulus level then the midpoint of  the 
normalized curve for the fraction of modified receptor lies to the right (left) of  the 
midpoint of  the curve for receptor occupancy. 

S T I M U L U S  R E M O V A L  

When stimulus is removed one would expect a deadaptation to prestimulus 
behavior. This occurs as the receptors progressively return to their prestimulus 
condition. Figure 5 shows the response to successive changes in level of  ligand 3': 
0 4  1, 1 ~ 10, 104 0, 0 4  10. Also depicted are the concomitant changes in the extent 
of receptor modification. The removal of stimulus results in a sharp drop of activity 
below the basal level and a later slow recovery to the unstimulated state. This change 
in activity is associated with a decrease in the level of modified receptor. 

ADDITIVITY OF ACTIVITIES RESULTING FROM SUCCESSIVE STIMULI 

Another measurable property sometimes found in adapting systems is additivity 
of response magnitudes. That is, the response following an elevation in ligand L to 
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FIG. 5. Response of  the receptor system to successive stimuli, 3 '--0 ~ 1, 1 ~ 10, 10 ~ 0, 0 ~ 10, in the 
conditions of  Fig. 3. The time course of  the activity A (eqn 15a) is plotted in panel (a), rather than the 
ratio A/Ao, in order to show more clearly the response to a removal o f  stimulus. Shown in panel (b) is 
the related change in the fraction of  modified receptor. The curve for the time evolution of  the activity 
is obtained by means o f  eqns (6), (7), (12a) and (15a); for the initial conditions, eqns (12b) or (47) are 
used, depending on whether or not the background stimulus is nil. 

a level L~, plus the response elicited by a further elevation of  L to a level /~, is 
equal to the response induced by a single increase in L from 0 to L2. 

To examine the additivity property in terms of activities, we identify the change 
in activity Ar  with the integrated activity above basal as given by (49) 

io A~--'"= A ' - ' " ( t )  dt = (A~M ~ ' -  Ao) /W(y ' ) .  (59) 

We shall restrict our study of additivity to the cases of equations (53) or (54), 
wherein W(y)  is independent of y. With this, the additivity requirement 

AO-., ~_ ~ , - , , ,  = A$-., , T - - r a t  

becomes a requirement on the initial activity 

(A°~ ~ -  ao) + ( a ~  ~ ' -  ao) = A°~ ~'- ao (60a) 

or on the relative net initial activity 

a°- '" + a ~-'' ' = a °-'' '. (60b) 

A straightforward albeit somewhat lengthy calculation shows that (60) indeed holds 
when (53) and the covalent adaptation conditions (34c) are assumed (so that 
at - a4 = a 2 -  a3). Figure 6 illustrates both the independence of adaptation time on 
stimulus level and also additivity. 

Additivity is certainly not a general property of  our model. Let us consider for 
example the situation where (53) holds together with the adaptation condition (26) 
for microscopically reversible transformations, instead of  (34c). In this case, the 
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FIG. 6. Independence of adaptation time on stimulus level and additivity of integrated activities 
resulting from successive stimuli. The curves are obtained for the stimuli 3' = 0-* 1 (a), 1 ~ 10 (b), and 
0-~ 10 (c) for the parameter values K~ = 70, k_~ = 0-01 s -t, k_ 2 = 0.002 s -t, R r -  1, c--1; K2 is taken so 
as to yield equality of k l + k _  t and kz+k_ 2. Thus Kz=0-2456, k~ =0.00014s -I ,  and k2=0-00814s -I .  
Two activity coefficients are arbitrarily taken as a t = 20, a 4 = t; a 2 and a 3 are given the values a2* = 35-0 
and a* = 16-0 which satisfy conditions (34b) for exact adaptation. As indicated, all curves possess the 
same half-time, t~/2. 
right side of  the additivity equation (60a) contains the additional term 

Rr (at_a2+a3_a4)[ 1 K, ] 
1+T2 Q(T,)  K ~ + I  " 

This term will be small, and therefore total additivity will be observed, only in the 
cases that T1 is small or T2 is large. 

4. Discussion 

Besides the present analysis, other authors have considered exact adaptat ion of  
receptor-induced activities. One way of  accomplishing this was outlined by Macnab 
& Koshland (1972). (Also see Koshland, 1977.) In their mechanism, binding of  the 
stimulus to the receptor enhances both the synthesis o f  a response regulator and its 
degradation,  but with different t ime courses. This leads to a transient increase in 
the level o f  the regulator that governs the physiological response. Since the level o f  
the response is proport ional  to the difference between synthesis and degradation 
rates, exact adaptat ion can be obtained by arranging that the steady state values of  
these rates depend in identical fashion on the stimulus. 

Another approach to exact adaptation via receptor-mediated activities was exem- 
plified in a model  by Goldbeter  & Segel (1977, 1980) for the cAMP signalling system 
in Dictyostelium. When the model was applied to the effect of  a step increase in 
extracellular cAMP concentration, it was found that intracellular cAMP rose and 
then returned to its initial va lue- -as  a result of  the assumed constant input o f  the 
substrate ATP. Substrate degradation acts here as a counterweight to increased 
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stimulus and renders possible exact adaptation. Similar conclusions are reached in 
a related model where a sizeable portion of  the counterweight effect is associated 
with receptor modification (Martiel & Goldbeter,  1984; Goldbeter  et al., 1984). 

A detailed study of  a model of  covalent receptor modification and its application 
to bacterial chemotaxis was made by Goldbeter  & Koshland (1982). With regard 
to exact adaptation, ratios of  two receptor species or of  modification rates, or 
differences between modification rates, were considered as the quantity linked to 
the response. On the other hand, Block et al. (1983) showed how exact adaptation 
occurs in a model based on receptor modification when the response is proportional 
to the difference between the fractions of  unmethylated and methylated receptor 
with bound attractant. 

We have shown that a sensory system based on receptor modification, with an 
activity given by a linear combination (15) of  four receptor states, can respond and 
then adapt exactly to constant stimuli. We have investigated interconversion between 
different conformational states under the constraint of  microscopic reversibility as 
well as interconversion through covalent modification. In all of  our analytic work 
we have assumed (as seems very reasonable for slime mold and bacteria at least) 
that the formation on ligand binding of X from R and Y from D is fast compared 
to the R - D and X -  Y interconversions. Under study are extensions of  our work 
where this assumption is not made. 

In the covalent case, two conditions (34b) on the four activity coefficients a~, a2, 
a3 and a4 insure exact adaptation of  the activity A(t) to its basal level. It turns out 
that if these two conditions are assumed to hold, then the amount  by which the 
activity A exceeds its basal level Ao is completely determined up to a multiplicative 
constant. To demonstrate this we note that a combination of  (34b) and (15) yields 

A(t)-Ao=a~-B[k~R(t)+k2X(t)-k-2Y(t)-k_~D(t)] .  (61) 
kl 

Indeed, all the remaining arbitrariness in the model is incorporated into Ao and the 
multiplicative constant (a~- B)/k 1. The activity would be completely determined 
(by (18) and (A3.7)) if its basal and maximum level could be measured. 

Equation (61) can be interpreted as showing that 

A( t ) -Ao~v , . - va ,  

where Vm =---klR + k2X is the rate of  modification and va =- k_~D + k_2 Y is the rate 
of  demodification. Our model can thus be regarded as a molecular implementation 
of  one of  the mechanisms analyzed by Goldbeter  & Koshland (1982) in which 
vm-va was considered as the adapting quantity. Two other connections of  our 
model with rates can be obtained by combining (61) and (1) to obtain 

d A ( t ) - A o - d  (D+ Y)= - - ~ ( R + X ) .  

We stress that our  theory requires the perfectly adapting receptor to have at least 
three different conformations. That is, binding of  the ligand must significantly alter 
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at least one of the two basic interconverting configurations of the free receptor R 
and D. If not, then a~ = a2 and a 3 = a n. In the covalent case, this implies k~ = k2 and 
k_~ = k-2 by (34c), and hence no activity, by (35). In the reversible case, the absence 
of activity follows immediately from (30a). 

We now briefly examine to what extent the model proposed here is relevant to 
such well studied cases of adaptation as those found in bacterial chemotaxis, and 
D. discoideum cAMP secretion (Springer et al., 1979; Dinauer et al., 1980a, b). 
(Detailed comparison with experiment will be provided elsewhere (Knox et aL, 
1986).) In addition to adaptation, the main features of these systems are (i) the 
dependence of adaptation time on receptor occupancy (Berg & Tedesco, 1975; 
Spudich & Koshland, 1975; Devreotes & Steck, 1979), (ii) the additivity of net 
response to incremental stimuli (Rubik & Koshland, 1978; Devreotes & Steck, 1979), 
(iii) the dependence of the extent of receptor modification on receptor occupancy 
(Goy et al., 1979; Klein et al., 1984), (iv) the reversal of response and initiation of 
deadaptation upon removal of stimuli (Kleene et al., 1979; Koshland, 1979; Dinauer 
et al., 1980a). In section 3 we demonstrated that all these major trends can be 
mimicked by the present model. Obtaining exact correspondence of the model with 
experimental observations may require further refinement of the model. For instance, 
receptors could be multiply modified or different receptor classes may interact. 
Bacterial chemoreceptors are known to be multiply methylated (De Franco & 
Koshland, 1980). The role of such multiple modification has recently been considered 
in a two-state receptor model for exact adaptation proposed by Asakura & Honda 
(1984). 

The question arises as to how one might implement in molecular terms the 
requirement of our model that the activity be proportional to a linear combination 
of the receptor states. One way to do this is to assume that the activity coefficients 
ai of (15) represent affinities of binding of an effector molecule M to each of the 
receptor forms. On stimulation, the effector is removed from the intracellular medium 
by virtue of differential binding to receptor states. (Alternatively, the effector could 
be released upon stimulation.) Later the effector returns to its initial value because 
of the rearrangement of receptor states accompanying adaptation. The transient 
decrease (or increase) in M is assumed to trigger the behavioral response (Macnab, 
1980). 

To show explicitly how such a scheme might work, we assume that effector binding 
to the receptor is fast, so that the amounts of the four different effector-receptor 
complexes would be given by the following equilibrium relationships 

R M = a l R x M ,  X M = a 2 X × M ,  Y M = a 3 Y x M ,  D M = a 4 D x M .  (62) 

Let Mr denote the total amount of M. Then conservation of M together with (15) 
and (62) implies 

M T = M + R M + X M +  Y M + D M ,  i.e. M T = M + M A ( t ) .  (63) 

Two possibilities now arise. A relevant physiological response R could be an 
increasing function of either of the concentrations M and M r - M  of free and 
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bound effector, i.e. from (63) 

MTA 
R = f ( l + - ~ )  or R = g ( 1 - - ~ ) .  (64a, b) 

The former possibility might find application in the liberation, upon stimulation, 
of one of the che gene products in bacterial chemotaxis. In the second possibility 
the activity coefficients may represent coupling constants between receptor and an 
intracellular enzyme, e.g. adenylate cyclase in the case of D. discoideum. Whatever 
the functions f and g in (64), in all situations, since A(t) always returns to the same 
value at steady state, so will M(t).  

In case (64b), if A << 1 

g ~ g(O) + g'(O)MTA 

and the response R above basal is proportional to the amount of activity above 
basal. Consider, however case (64b) in situations wherein stimulus induces a peak 
activity AM that is much larger than unity. Here, although activity decreases exponen- 
tially from AM, response R will saturate and remain constant over an extended 
period of time before it finally returns to its basal level. Generally speaking under- 
standing of the activity A generated by the receptor may be only the first (essential) 
step in discerning the perhaps numerous links between receptor activity and physio- 
logical response. See Segel et al. (1985) for further discussion of this issue. 

In the analysis of section 2 we did not take into account any binding of an 
intracellular effector to the four receptor species. This is justified if the total amount 
of effector MT is small compared to the total amount of receptor Rr. Such an 
assumption may not be unrealistic, since sufficiently small Mr would naturally lead 
to stochastic fluctuations of the type thought to play a role in the random occurrence 
of tumbling in bacterial chemotaxis (Koshland, 1977). 

Another way to implement our basic assumption (15a) is to assume that the 
activity coefficients represent the conductances of an ion channel. The "resting" 
concentration of ion in the cytoplasm would be determined by the balance between 
the influx due to the basal response of the adapting box and an efflux due to an 
active pumping mechanism (not considered here). Binding of stimulus to receptor 
would cause a transient increase in conductance and cytoplasm ion concentration. 
The cytoplasmic concentration would eventually return to the resting level, since 
the net conductance due to the box would return to its basal state. The activity 
coefficients may also represent relative enzymatic activities in the synthesis of an 
effector molecule, when the receptor possesses a catalytic site. 

We found that the relative affinities of the two receptor states, R and D, had to 
differ significantly to obtain a strong increase in activity and also exact adaptation 
in the microscopically reversible case. Our requirement for a tight binding state in 
an adapting receptor system subject to microscopic reversibility was also found by 
Swillens & Dumont (1976) in their related study of receptor desensitization in 
response to hormone stimuli. 

In contrast to the reversible case, if exact adaptation occurred via covalent 
modification a strong increase in activity could be obtained even if the two receptor 
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states  had  iden t ica l  affinities for  s t imulus .  E x a m p l e s  o f  bo th  a d a p t a t i o n  me c ha n i sms  
exist.  Desens i t i za t ion  o f  ace ty lcho l ine  recep to rs  is a c c o m p a n i e d  by  a shif t  to a h igh  
affinity s ta te  ( H e i d m a n n  & Changeux ,  1978) whereas ,  in bac te r ia ,  a d a p t a t i o n  to  
chemotac t i c  s t imul i  a p p e a r s  not  to b r ing  a b o u t  a change  in affinity. The  la t ter  
m e c h a n i s m  requi res  expend i tu r e  o f  energy to me thy la t e  the  receptor .  

Why shou ld  energy be  e x p e n d e d  in o r d e r  to ma in t a in  a given b ind ing  affinity? 
Suppose  tha t  the  r ecep to r  is b i func t iona l ,  i.e. in a d d i t i o n  to its role  as a sensor ,  
which  was inves t iga ted  herein ,  it also carr ies  out  a s econd  funct ion .  I f  the  b ind ing  
s tep  were ra te  l imi t ing  in this  second  act ivi ty,  the  b ind ing  affinity change  requ i red  
for  a d a p t a t i o n  in the  absence  o f  cova len t  modi f i ca t ion  cou ld  have  a de le te r ious  
effect on  the  s e c o n d  func t ion .  F o r  example ,  in bac te r ia ,  some o f  the  c h e m o r e c e p t o r s  
are  also t r anspor t e r s  o f  the  chemoat t rac tan t s .  I f  the  affinity inc reased  grea t ly  as a 
resul t  o f  a d a p t a t i o n ,  t r anspo r t  might  be grea t ly  reduced .  Thus,  the m e c h a n i s m  which  
had  effectively d i rec ted  the  bac te r ia  t oward  h igher  concen t ra t ions  o f  a t t rac tan t  wou ld  
r ende r  them incapab l e  o f  ut i l iz ing it. Therefore ,  the  energy requ i red  by  covalent  
modi f i ca t ion  seems jus t i f ied  in this case. 
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APPENDIX 1 

Resolution of  Receptor Kinetics Into Fast Binding and Slow Modification Steps 

The text provides an informal  t reatment  o f  the kinetic equat ions  (1) and the 
conservat ion condi t ion  (2). The kinetic equat ions  contain  a mixture o f  fast and slow 
terms referring respectively to b inding o f  the l igand and  interconvers ion o f  the 
receptor  states. A possible way  to obtain  approx imate  equat ions  for  the slow 
interconversion,  a way  different f rom that  o f  the text, is to assume that  the fast steps 
are in equi l ibr ium and therefore that the b inding  terms are negligible compared  to 
the s lower in terconvers ion terms. This alternative a p p r o a c h  leads to the same s teady 
state but to a different t ime course for  the adap ta t ion  process.  Analysis  o f  par t icular  
simple models  indicates that  the second app roach  is not  correct. To clarify this 
matter  more  fully we now show how a fairly s tandard  appl icat ion o f  singular 
per turbat ion  theory  (see for  example Rub inow 1975, Section 2.3) can be used to 
justify the a p p r o a c h  in Section 2 to equat ions  (1) and  (2). Cha  (1968) gives a 
p rocedure  to deal with kinetic schemes conta in ing  both  slow and  fast steps but  
no indicat ion o f  a p r o o f  is supplied.  

We first note  that  eqns (1) and (2) are valid for  t > 0, after l igand concent ra t ion  
has been elevated to the fixed value LI. Initially the system is at the basal  level, i.e. 

a t t = 0 ;  R = R o ,  X = 0 ,  Y = 0 ,  D = D o  (A1.1) 

where Ro and  Do are given explicitly in (16). 
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Let us introduce the dimensionless variables 

R X Y D t 
--=-- x = - - ,  y = 6 = - -  ~" = ( A 1 . 2 )  

r RT'  R-r Rr" Rr" l /k_ ,"  

In terms of these variables, the equations (1) and (2) and the initial conditions 
(AI.1) take the form 

dr~dr = --ell r + el_iS -- yr + x, (A1.3a) 

dx / dz  = -el2x + el-2y + yr - x, (A1.3b) 

d y / d ¢  = el2x - el_2y + ATc6 - Ay, (A1.3c) 

dT/d¢ = ellr-- el_~6 -- A yc8 + A y, (A1.3d) 

r + x + y +  8 --- 1, (A1.3e) 

z = 0 :  r=ro,  x = 0 ,  y = 0 ,  6=8o.  (A1.3f) 

Here we have employed the new dimensionless parameters 

k_l k2 k 2 k-d 
ell =--- k--L eL1 -'---~ e l2=- -  e l _ 2 ~ C ,  A =----~_, 

k_," k_, '  k-r" "---r 
(A1.4) 

Ro Do 
ro = 80 

RT' = R r "  

We are interested in the situation wherein k-l, kl, k-2 and k2 are very much smaller 
than k_,, k,, k-d and kd. For this reason we introduced the very small dimensionless 
number e into the definitions of the dimensionless parameters that are constituted 
of  the ratio of  a rate constant from the first group to a rate constant from the second 
group. We suggested earlier that certain other parameters might be small or large; 
recall for example the conditions on c in (32) and (33). We assume that nonetheless 
the overriding difference in parameter magnitudes is expressed in e. 

The dimensionless problem (A1.3) is appropriate for the early development of 
the solution where l / k _ ,  is a suitable time scale. (See Segel (1984, Chapter 4) for 
a discussion, in a biochemical context, of the crucial choice of time scale.) As a 
first approximation we equate to zero the terms multiplied by e. This yields 

dr  dx dy d8 
- - = - y r + x ,  - - =  y r - x ,  - - = A y c 6 - A y ,  - - = - A y c S + A y .  (A1.5) 
dr  dr  dr  dr  

It follows, using (A1.3f), that 

Consequently, 

r =  

r+x=ro ,  y + 6 = 8 o .  (A1.6) 

ro [1 + T e- (V+t) ' ] ,  
2/+1 

y = ~ [ 1  - e-a(w+l)~], 

roy e_(~+l).], 
X = y + l [ 1 -  

(A1.7) 
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The solution thus far approximately describes the relatively fast attainment of a 
new equilibrium between R and X and between D and Y upon the addition of L. 
For large 

ro ro y 80 yc 8o 
r ~- ~ r i ,  x ........... -~xi, Y ~  =--Yi, t ~  = 8  i. (A1.8) 

y + l  y + l  y c + l  y c + l  

The formulae in (A1.8) are the dimensionless forms of the corresponding relations 
in (8). 

To follow the further development of the solution, we employ the values of  (A1.8) 
as initial conditions in a new calculation on a much slower time scale. The new 
time scale must permit interchange between R and D and between X and Y. This 
will occur if we define a new time variable % by 

~'s= eT. 

We shall use tildes to distinguish the concentrations in the "slow" layer that we are 
about to consider. It turns out that these concentrations must be examined to a 
second approximation. We thus write 

= + +. . . ,  

with similar expressions for :~, )7 and & The equation for ~ implies that 

d;o 
e - - + . . .  = - e l ,  Fo+ e L , g o -  Y(~o+ eft + . . . )  + Xo+ e.~, + . . . .  

dzs 

Collecting powers of  e, and equating each to zero in turn, we obtain 

-y~o+~o=0 ,  d~=° = - / ,~o+ /_ ,go -  y~ + ~ , , . . . .  
d% 

The other equations are treated similarly. We thus obtain at lowest order from the 
equations for ~, ~, )7 and g 

yCgo-;o=O, 

We cannot solve for the four unknown functions at this stage: all we know from 
the above equations is that these functions are constrained by 

£o = Y?o, 37o = Cygo. (A1.9) 

The terms proportional to e give 

d;o/d% = -1,;o + l-, go-- T;, + ; ,  

d ;o /d r ,  = -12;o + i-2 37o + V~, -;~ 
(AI.10) 

d);o/dzs = 12Xo- l-2yo+ ATcgl - A);I 

ago/de, = l i fo -  l - , go -  ATcg, + A;,. 

By adding, respectively, the first and second pairs of the equations (AI.IO) and 
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employing (A1.9), we obtain 

c(1 + y) d;o/dz~ = -C~o(ll + 12Y) +)7o(1-1 + l_2cy) 

(1 + cy) d)7o/d~-~ = c~o(ll + 12y) - )7o(l-1 + l-2cY) • 
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(A1.11a) 

(A l . l l b )  

The unknown functions F0(z~), 15o(r~), Xo(r~) and )7o(Z~) can now be determined by 
(AI.ll), (A1.9) and the initial condit ions--from (A1.8) 

Fo(0) = r,, go(0) = ~,, ~o(0) = x,, )7o(0) = y,. (Al.12) 

The equations (AI.11) and the boundary conditions imply 

c(1 + y):~o + (1 + cy)37o = c(1 + y)x, + ( 1 + cy)y, = cy(ro+ 80) = cy. 

Elimination of  )7o in (Al . l l a )  yields an equation that can be written 

d ; o =  I7'- ~';o (Al.13) 
dr~ 

where 

,<_ m=-' P,,,+ L ,<_,a'= 
This equation is equivalent to (10), which completes the justification of  our earlier 
calculations. 

We emphasize that the function x of  (A1.7) is an approximation to the dimension- 
less X concentration during the fast transient period, while the appropriate solution 
to (Al.13), namely 

. 

provides an approximation for the slow readjustment period. Singular perturbation 
theory shows that an approximation x that is valid throughout both periods is 

so that 

x( t ) = x( k_d ) + :ro( ek -d  ) - ! im x( r), 

X ( t )  roy ^_(v+l)k / +  V_~_+( roY ~__) e _ ~  , 
R r  = y + l  ~ W \ y + l -  - '" 

There are three independent differential equations in the governing (linear) system 
(1), so that we expect to observe three different exponentials. The exponents are 
(K-R~L1+ 1)k_r for the fast initial R - X  interconversion, (KoILI + 1)k-a for the 
concurrent fast D - Y  interconversion, and e ffk_,  for the later slow interconversion 
among all four forms. 

It follows from (12a) that during the slow modification phase the activity A 
decreases (increases) monotonically if the net response to binding of  ligand during 
the fast phase is an increase (decrease) of  A. Activity often increases (decreases) 
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monotonically during the fast binding period as well, but it turns out that there are 
conditions where a single extremum can exist during this period, for example when 

y + C  - l  k _ l - k _ l  < k r 
~ <  (AI.14) 

y+l  k2-k_, kd" 

APPENDIX 2 

Constraints on the Parameters of  the Receptor "Box": the Case  
of  Covalent Modification 

When the states R and X are covalently modified into the states D and Y (see 
Fig. 1) the question arises as to whether the conditions of microscopic reversibility 
(28) and (29) hold for the receptor "box". We show here that this particular relation 
does not hold in the general case of covalent modification. 

In this general case, the modification of R(X) into D(Y) and the reverse transition 
from D(Y) to R(X) are catalyzed by two distinct enzymes. For example protein 
phosphorylation and dephosphorylation are catalyzed by a protein kinase and a 
protein phosphotase, respectively. Such a situation probably pertains to the cAMP 
receptor in D. discoideum. Similarly, a methyltransferase and a methylesterase 
catalyze methylation and demethylation of proteins, as observed for bacterial 
chemoreceptors. Moreover, in these two cases the two modifying enzymes operate 
with different cofactors (Fig. A1). In the example of phosphorylation-dephosphory- 

8 

A 8 

FIG. A1. Covalent modification of the receptor. Solid arrows indicate binding of ligand and pre- 
dominant reactions for the interconversion of R into D and of X into Y (see text). 

lation, which will be treated here for definiteness, A and B refer to ATP and ADP, 
while E and F refer to /-/20 and Pi, respectively. 

The rate constants k~, k2 and/~_~, k_ 2 refer to the direct and reverse steps of the 
kinase reaction, whereas the rate constants k~, k~ and k'_~, k'-2 relate to the backward 
and forward steps of the phosphatase reaction. 
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At equilibrium detailed balance applied to each of the six reactions yields the 
two conditions 

( fc_,l ~q ) = ( KRI  KDI  ( Fc_21Fq) (A2.1) 
and 

( k ' , /  k~) = ( KR/ KD)( k '2 /  k~). (A2.2) 

These relations still hold when the system is driven far from equilibrium by changing 
the (independent) ratios B / A  and E/F.  Moreover if the cofactor concentrations 
are regarded as constants one can rewrite (A2.1) and (A2.2) in terms of pseudo first 
order rate constants 

(fc_~ B~ flq A) = ( KR / KD)(~c-2B//~2A) (A2.3) 

( k '~E /k~F)  = (K_R/ K o ) ( k ' 2 E / k "  F). (A2.4) 

The pair of independent constraints (A2.1) and (A2.2) (or (A2.3) and (A2.4)) reflects 
the existence of two cycles in the system of Fig. A1, as illustrated in Fig. A2. 

4 B 

A B 

X ~ Y 

FIG. A2. The two cycles that constitute the scheme of Fig. A1. 

Far from equilibrium, the system predominantly operates following the solid 
arrows in the scheme of Fig. A1, i.e. the phosphorylation of the receptor is catalyzed 
primarily by the kinase, whereas dephosphorylation is catalyzed principally by the 
phosphatase. This approximate scheme is identical with that of Fig. 1 when the 
kinetics parameters are defined as 

k, = tic,A, k_, = k ' ,E ,  k2 = ~c2A, k-2 = k'2E. (A2.5) 

As shown by eqns (A2.3) and (A2.4) the rate constants k~, k-l, k2, k_2 of (A2.5) 
do not have to obey the particular constraint of microscopic reversibility (28) (or 
(29)) since they are associated with a "hybrid" cycle constructed from two true 
thermodynamic cycles. Indeed microscopic reversibility constraints exist for each 
of these two cycles, i.e. conditions (A2.3) and (A2.4), but these do not imply condition 
(29). 
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APPENDIX 3 

Positivity of Activity Coefficients and Initial Activity 

The requirement that activity coefficients be positive (which is implicit in the 
molecular implementations proposed in the Discussion) leads to constraints on the 
coefficients. For example, consider (18c). Upon rearrangement, this equation yields 

a~ = B+ K~I(B - a4). 

If as > 0 then a4 < B(1 + K~). Similarly, if (18c) is solved for a4 and the positivity 
of a, is involved, we find that a~ < B(1 + K~-~). Identical treatment of (26b) yields 
the final result that in the reversible case, the following are conditions for the as to 
be non-negative 

a--2<-l+K~, a2-< l+K21 , a3~ 1 +K2, a4<-l+K1. (A3.1) 
B B B B 

If one of the pair (a~, a4) is chosen according to (A3.1) then the other member of 
the pair, given by (18c), will be non-negative. The same holds for the pair (a2, a3) , 
which are related by (26b). 

To examine relative initial activity in the reversible case, we focus attention on 
the terms a2Ro+ a3Do in (30b). Use of (16) and (44) yields 

Rrl[BK~(I+K2~)+a3(1 -K1K2~)]. (A3.2) a2R0+ a3Do = K1 + 

There are now two situations. If K~ > K2 then a2R0+ a3Do is largest when a3 = 0. 
If K~ < K2 we maximize activity by replacing a3 by its largest possible value as 
obtained from (A3.1). We thus obtain, using Ao == BRr, the following bounds on 
the maximum initial activity 

ot(oO)<-- K1-K2 if K l>  K2; a(co)<- KE-K-----'~ if K2> K1. (A3.3) 
K2(Kl+ 1) K I + I  

The equals signs in (A3.3) are appropriate if 

a2=B(K21+l) ,  a3=0 ,  or a3=B(I+K2), a2=0 ,  (A3.4) 

respectively. 
Let us turn to the irreversible case. Given (34c), we find that the requirement that 

all the a~'s be non-negative leads, instead of (A3.1), to 

l _ k - 2 < a l < l + m i n [  kl ,  kl ) ,  
k 2 B \ k - i  k -2 /  

1 _ k-2 < a3 < 1 + min (k_7_-2, k_~-2.~, 
k-1 B \ kl k2 / 

1_ k2 < a2 < 1 + min (.kk_Z21 k2~, 
kl B _ ' k-2] 

k_, a4 ( k_..2_l, k- i ) 
1 - k - 2  < B" < 1 + min \ k, k--~2 " 

(A3.5a, b) 

Here by "min (a,/3)" we mean the smaller of the quantities a and/3. These "min" 
expressions arise from combi'ning two of the inequalities that are obtained by 
manipulating the six equations that are included in (34c)--under the requirement 

(A3.5c, d) 
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that one or the other of the a's contained in each is positive. If any one of the 
activity coefficients is chosen according to (A3.5), then the other three, given by 
(34c), will be non-negative. 

Turning to maximum peak activity in the irreversible case, using (16) we observe 
that 

( k 2 - k l ) R o - ( k _ 2 - k _ 1 ) D o = R T k 2 ( K ~ - K 2 ) / ( K ~ + I ) .  (A3.6) 

Employing aIRo+a4Do = Ao= BRr and (35), we write 

( al - a4)k2( Kl - K2) 
a(oo) = if K1 > K2; (A3.7a) 

( K, + l)(k_, + k,)B 

(a4- al)k2( K 2 -  KI) 
a (o0) = if K2 > K1. (A3.Tb) 

( K l + l ) ( k - l + k l ) B  
From (18c) and (A3.5a) 

a l - a 4 = ( a ~ - B ) ( l + K l )  < - min kk_, B(1 + K~). (A3.8) 

It follows from (A3.7a) that 

a(°o)<-[min( -~_ ,~_£)]  K ' - K 2  J "~X-~ if K , >  K 2. (A3.9a) 

The corresponding formula 

K 2 -  K 1 
ol ( oo ) .~ mink kl ~2 - K'~-I +-K,) if K2 > K,, (A3.9b) 

is an immediate consequence of the alternative to (A3.8) that is obtained by using 
(18c) to write al in terms of a4 

a 4 - a , = ( a 4 - B ) K ; ' ( K , + l ) <  min k B(1 + K~-'). (A3.10) 

Note that bounds (A3.9a) and (A3.9b) are somewhat more restrictive than their 
counterparts (A3.3) in the reversible case. Again, an arbitrarily large response can 
theoretically be achieved. In cases (A3.9a) and (A3.9b), respectively, this requires 

k2>> k-b k2>> k_2, K~ not small, (A3.1 la) 
o r  

k_ 2 >> k b k-2 >> k2, K~ not large. (A3.1 lb) 

As noted in the text, conditions for large initial activity are associated with certain 
properties of recovery times. To explore this matter, let us consider the situation of 
(53) when t~/2 is independent of stimulus level. If 

k-1 - k - 2  = k2- kl >0  

then (A3.9a) reduces to a (oo) _ 1 -(k_2/k_l). Thus in these circumstances a (oo) <_ 1, 
i.e. AM-<2Ao. It follows that the maximum of a(oo) will be of magnitude unity 
unless there is a marked dependence of recovery time on stimulus level. 


