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The Phosphorylated C-Terminus of cAR1 Plays
a Role in Cell-Type-Specific Gene Expression
and STATa Tyrosine Phosphorylation
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Baltimore, Maryland 21205; and ‡Department of Microbiology and Molecular Genetics,
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cAMP receptors mediate some signaling pathways via coupled heterotrimeric G proteins, while others are G-protein-
independent. This latter class includes the activation of the transcription factors GBF and STATa. Within the cellular
mounds formed by aggregation of Dictyostelium, micromolar levels of cAMP activate GBF function, thereby inducing the
transcription of postaggregative genes and initiating multicellular differentiation. Activation of STATa, a regulator of
culmination and ecmB expression, results from cAMP receptor-dependent tyrosine phosphorylation and nuclear localiza-
tion, also in mound-stage cells. During mound development, the cAMP receptor cAR1 is in a low-affinity state and is
phosphorylated on multiple serine residues in its C-terminus. This paper addresses possible roles of cAMP receptor
phosphorylation in the cAMP-mediated stimulation of GBF activity, STATa tyrosine phosphorylation, and cell-type-
specific gene expression. To accomplish this, we have expressed cAR1 mutants in a strain in which the endogenous cAMP
receptors that mediate postaggregative gene expression in vivo are deleted. We then examined the ability of these cells to
undergo morphogenesis and induce postaggregative and cell-type-specific gene expression and STATa tyrosine phosphory-
lation. Analysis of cAR1 mutants in which the C-terminal tail is deleted or the ligand-mediated phosphorylation sites are
mutated suggests that the cAR1 C-terminus is not essential for GBF-mediated postaggregative gene expression or STATa
tyrosine phosphorylation, but may play a role in regulating cell-type-specific gene expression and morphogenesis. A mutant
receptor, in which the C-terminal tail is constitutively phosphorylated, exhibits constitutive activation of STATa tyrosine
phosphorylation in pulsed cells in suspension and a significantly impaired ability to induce cell-type-specific gene
expression. The constitutively phosphorylated receptor also exerts a partial dominant negative effect on multicellular
development when expressed in wild-type cells. These findings suggest that the phosphorylated C-terminus of cAR1 may
be involved in regulating aspects of receptor-mediated processes, is not essential for GBF function, and may play a role in
mediating subsequent development. © 2001 Academic Press
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1
INTRODUCTION

Dictyostelium development can be separated into two
distinct phases (Chen et al., 1996; Firtel, 1995; Loomis,
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996; Williams, 1995). In the first stage, ;105 cells chemo-
tactically aggregate to form a mound in response to nano-
molar pulses of cAMP. During the second stage, rising
levels of cAMP within the mound induce cells to express a
series of postaggregative genes (Brown and Firtel, 1999).
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226 Briscoe et al.
Products of some of these genes, in combination with high
extracellular cAMP and other morphogens such as DIF, are
thought to lead to differentiation of prespore cells and
several subclasses of prestalk cells, followed by morphogen-
esis (Aubry and Firtel, 1999; Early et al., 1993). The cellular
response to cAMP is mediated by a family of four cell-
surface, seven-span, G-protein-coupled receptors (cARs),
which have distinct temporal and spatial patterns of expres-
sion and different binding affinities (Kim et al., 1998;
Verkerke-van Wijk et al., 1998; Rogers et al., 1997).

Aggregation-stage signaling pathways are mediated pre-
dominantly through cAR1, the highest-affinity cAMP re-
ceptor, which acts through the heterotrimeric G protein
containing the Ga2 subunit (Chen et al., 1996; Devreotes,
994; Firtel, 1995; Rogers et al., 1997). Nanomolar cAMP
ulses stimulate the activation of adenylyl and guanylyl
yclases, which function in pathways that control the
ropagation of the cAMP signal (signal relay) and chemo-
axis, respectively. Furthermore, the pulsatile, nanomolar
AMP signal induces the expression of aggregation-stage
enes (e.g., genes encoding cAR1, Ga2, and the cell adhe-
ion molecule CsA), as well as stimulating cAMP-mediated
a21 influx, activation of the MAP kinase ERK, and phos-
horylation of the receptor on serine residues in its
-terminal tail (Chen et al., 1996; Devreotes, 1994; Firtel,

1995; Hereld et al., 1994). Although the heterotrimeric G
protein containing the Ga2 subunit is essential for aggre-
ation and the activation of adenylyl and guanylyl cyclases,
ther receptor-regulated pathways, which include cAMP-
ediated Ca21 influx, ERK2 activation, ligand-mediated

eceptor phosphorylation, and activation of the GBF and
TATa transcription factors, are G-protein-independent
Araki et al., 1998; Maeda et al., 1996; Milne et al., 1995;
chnitzler et al., 1995). Thus, aggregation is controlled by
AR1 through both G-protein-dependent and -independent
ffector pathways.
One of the key features that controls the directed

hemotaxis of cells toward an aggregation center is the
ycling of the receptor and coupled signaling pathways
etween adapted and de-adapted states. Ligand binding to
he cARs rapidly activates the downstream signaling
athways and leads to desensitization of the receptor and
daptation of effector pathways with kinetics that are
athway-specific. Examination of receptor mutants, in
hich the C-terminal tail is deleted or all potential
-terminal phosphorylation sites are mutated, revealed

hat receptor phosphorylation is associated with a reduc-
ion in the receptor’s affinity (e.g., loss of ligand binding;
aterina et al., 1995a,b; Kim et al., 1997), but is not

equired for adaptation of the effector pathways; the
athways remain adapted as long as cAMP is present. The
xtracellular cAMP ligand is rapidly degraded by an
xtracellular phosphodiesterase, leading to dephosphory-
ation, resensitization of the receptors, and de-adaptation
f effector pathways within 6 min. As the mound forms,
he level of extracellular cAMP is thought to rise to

icromolar levels (Abe and Yanagisawa, 1983). High

Copyright © 2001 by Academic Press. All right
xtracellular cAMP represses the expression of
ggregation-stage genes and induces the expression of
ostaggregative-stage and cell-type-specific genes (Firtel,
995). This response is mediated through the transcrip-
ion factor GBF, whose function is required for postag-
regative and cell-type-specific gene expression and sub-
equent morphogenesis (Schnitzler et al., 1994).
onstitutive expression of GBF is sufficient to enable
AMP to induce the postaggregative/cell-type-specific
enes in vegetative cells in a receptor-dependent fashion.
his experimental technique, therefore, temporally and
orphologically separates induction of postaggregative

ene expression from aggregation and multicellular de-
elopment. GBF activation employs the same cAMP
eceptors required for aggregation but functions via a
-protein-independent pathway (Schnitzler et al., 1995).
hus, one of the key features of Dictyostelium develop-
ent is that the presentation of the ligand in the form of
low pulsatile signal (normally during aggregation) or at
high, sustained level (in the mound) can induce differ-

nt signaling pathways within the same cell, resulting in
istinct biological responses.
An additional cAMP-receptor-dependent and G-protein-

ndependent pathway stimulated by the high levels of
AMP present during mound formation is activation of the
ranscription factor Dd-STATa (Araki et al., 1998; Mohanty
t al., 1999). Dd-STATa is rapidly tyrosine phosphorylated
nd translocated to the nucleus in all mound-stage cells,
lthough during the slug stage, nuclear enrichment is
bserved at high levels only in cells present in the anterior
restalk A domain. Dd-STATa binds to activator elements
n the ecmA promoter and two repressor elements in the
cmB promoter; in vivo it acts as a repressor for ecmB
Kawata et al., 1996; Mohanty et al., 1999). Dd-STATa-null
ells show defects in chemotaxis and in the negative
egulation of ecmB expression (ecmB is expressed through-
ut the prestalk region), with little effect on ecmA expres-

sion apart from alterations in spatial patterning (Mohanty
et al., 1999). Dd-STATa is rapidly tyrosine phosphorylated
in response to cAMP in cells starved or pulsed for 4–6 h in
in vitro suspension assays, allowing the kinetics of Dd-
STATa activation to be compared between wild-type cells
and cells expressing mutations in cAR1 or the downstream
signaling pathway.

In this article, we investigate the effect of cAR1 muta-
tions on multicellular development, the induction of GBF-
mediated gene expression, and STATa tyrosine phosphory-
lation in response to cAMP. Our results show that although
cAMP-mediated GBF function is not affected, the postag-
gregative stage of the developmental program is impaired in
cells expressing mutant receptors, with STATa tyrosine
phosphorylation being affected by a constitutively phos-
phorylated receptor. Furthermore, the constitutively phos-
phorylated receptor mutant exhibits a dominant phenotype

when expressed in wild-type cells.

s of reproduction in any form reserved.



t

w
P
p
a
c
S

a
i
p
w

n
d
c
t
p
l
l
o
f
g
d
c
e
2
t
a
n
l
s

3
r
g

i
w
l

227Receptor Activation of Gene Expression
MATERIALS AND METHODS

Cell Culture and Molecular Biological Procedures

All cell culture procedures and molecular techniques used have
been described previously (Schnitzler et al., 1994). Individual
details are described in the figure legends.

Construction of Strains Constitutively
Expressing GBF

The Act15-GBF expression vector has been previously described
(Schnitzler et al., 1994). Individual strains were transformed with
his vector by electroporation, selecting for G418 resistance.

Construction of Strains Constitutively Expressing
cAR1 Mutants

car1/3-null cells and KAx-3 cells were transformed with the
extrachromosomal vector (Ddp1 origin of replication) by electropo-
ration, selecting for G418 resistance (40 mg/ml for transformations
in car1/3-null cells and 30 mg/ml for the transformations in KAx-3
cells). Individual clones were picked from colonies which were able
to grow on a lawn of Escherichia coli B/r containing 80 mg/ml
G418, on which cells from the whole population of transformants
had been plated.

STATa Immunoprecipitations

Exponentially growing cells were pulsed in potassium phosphate
buffer (pH 6.2) with 30 nM cAMP every 6 min for 4 h, before being
treated with 300 mM cAMP for the times indicated. Cells (2 3 107)

ere pelleted and resuspended in 1 ml NP-40 cell lysis buffer (13
BS, pH 7.4, 50 mM NaF, 1 mM vanadate, 1% NP-40, 2 mM EDTA,
H 7.2, 1 mM sodium pyrophosphate, 1.6 mg/ml leupeptin, 4 mg/ml
protinin). Cells were allowed to lyse on ice for 5 min before
entrifugation at 15K rpm for 10 min at 4°C. Monoclonal anti-
TATa (2.5 ml) was added to the supernatant and incubated on a

slow rocker for 1 h at 4°C before addition of 40 ml of a 50% slurry
of protein A beads and incubation for a further 45 min. Beads were
washed four times in NP-40 buffer, 50 ml SDS sample buffer was
dded, and the mixture was boiled for 3 min. Western blots of
mmunoprecipitated STATa proteins were performed using anti-
hosphotyrosine antibody. Blots were then stripped and reprobed
ith the anti-STATa antibody. Results were visualized by ECL.

RESULTS

The C-Terminus of cAR1 Is Important for Cell-
Type-Specific Gene Expression but Is Not Essential
for the Activation of GBF

Three mutant cAR1 cAMP receptors that have altered
patterns of ligand-mediated phosphorylation of the
C-terminal cytoplasmic tail have been previously described
(Caterina et al., 1995a,b; Kim and Devreotes, 1994). Two of
these do not exhibit C-terminal tail phosphorylation: cAR1-
289T, in which the C-terminal cytoplasmic tail has been
deleted at residue 289, and cAR1-cm1234 (Caterina et al.,

1995a,b), in which all the serine residues of cAR1 that are

Copyright © 2001 by Academic Press. All right
ormally phosphorylated in response to cAMP have been
eleted or mutated to glycine or alanine. The third mutant,
AR1-106C, is a chimera in which the N-terminal 40% of
he protein is from cAR2, with the remaining C-terminal
art from cAR1. cAR1-106C is constitutively phosphory-
ated, presumably because its conformation mimics that of
igand-occupied cAR1 (Kim and Devreotes, 1994). In previ-
us work, all three receptors were constitutively expressed
rom the Actin 15 (Act15) promoter in cells in which the
enes encoding cAR1 and cAR3, the two cARs expressed
uring aggregation, had been disrupted. Cells lacking both
AR1 and cAR3 (car1/3-null cells) do not aggregate and
xhibit no cAMP-mediated responses. Expression of cAR1-
89T and cAR1-cm1234 in car1/3-null cells complements
he car1/3-null cells’ aggregation defect, but the cells lack
gonist-induced loss-of-ligand binding. In contrast, car1/3-
ull cells transformed with the constitutively phosphory-
ated cAR1 mutant 106C were unable to aggregate. Figure 1
hows a cartoon of the structure of these receptors.
Figure 2 depicts the developmental phenotypes of car1/

-null cells expressing either wild-type cAR1 or the mutant
eceptors and the expression levels of the postaggregative
ene LagC, the prestalk-specific gene ecmA, and the

prespore-specific gene SP60/CotC during development on
nonnutrient NaPO4-buffered agar. car1/3-null cells express-
ng wild-type cAR1 aggregate, form slugs, and culminate
ith normal developmental timing. Consistent with pub-

ished results (Insall et al., 1994; Soede et al., 1994), the
timing of induction and the level of expression of the
assayed genes in these cells were indistinguishable from
those which have been observed in wild-type cells (data not
shown; Fig. 2; Dynes et al., 1994; Insall et al., 1994; Soede et
al., 1994; Williams et al., 1987).

car1/3-null:Act15-cm1234 cells aggregate normally as
previously described and form mounds (Kim et al., 1997).
As shown in Fig. 2, many of the aggregates are delayed at
the mound stage at 24 h, but eventually all mutants form
fruiting bodies by 48 h (data not shown). In contrast to
wild-type cells or car1/3-null:Act15-cAR1 cells, develop-
ment of cAR1/3-null:Act15-cm1234 cells beyond the
mound stage is very asynchronous. LagC and the cell-type-
specific genes SP60/cotC and ecmA are expressed, although
the level of expression of ecmA is reduced and LagC mRNA
was not detected after 16 h of development. These results
suggest that the cAR1 C-terminal serine residues, normally
phosphorylated in response to cAMP and constitutively
phosphorylated in the multicellular stages (Vaughan and
Devreotes, 1988), are not essential for GBF activation or
cell-type-specific gene expression, though receptor phos-
phorylation may be involved in controlling some aspects of
multicellular differentiation or the timing of development.
Whereas most clonal isolates that were examined had a
similar phenotype, the morphological phenotype ranged
from complete mound arrest to almost wild-type (data not
shown).

To further examine the possible role of the cAR1

C-terminus in postaggregative gene expression, we exam-

s of reproduction in any form reserved.
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228 Briscoe et al.
ined car1/3-null cells expressing cAR1-289T. car1/3-null:
Act15-289T cells showed a moderate aggregation defect.
Development was delayed and not all of the cells entered
the mound (Fig. 2). Eventually, after about 30 h, the mounds
started to dissipate and, after 2–3 days, a few small fruiting
bodies were apparent among the dispersed cells (data not
shown). LagC was induced to a level similar to that of
car1/3null:Act15-cAR1 cells, but the appearance of the
ranscript was delayed, consistent with delayed aggrega-
ion. The level of LagC expression remained high through
4 h, which is consistent with a developmental arrest at the
ound stage. SP60/cotC expression was also significantly

elayed and the level of expression was very low. No ecmA
xpression was observed. These data indicate that car1/3-

null:Act15-289T cells have a deficiency in cell-type-specific
gene expression. As the expression of LagC, which depends
on cAR signaling (Firtel, 1995), extends through 24 h, we
expect that the inability of these cells to express cell-type-
specific genes is not due to an inability to induce earlier,
postaggregative genes such as LagC. cAR1-289T and cAR1-
cm1234 thus produce a pattern of developmental defects
that indicates a role for the C-terminal tail, and possibly its
phosphorylation, in morphogenesis and the expression of
cell-type-specific genes. These defects are manifested pri-
marily after aggregation, at the transition between the
mound and the formation of the tipped aggregate.

As previously described, car1/3-null cells constitutively
expressing cAR1-106C from the Act15 promoter (car1/3-

ull:Act1-5106C cells) do not aggregate, although some

FIG. 1. Diagram depicting the cAR1 receptor and the mutants 2
residues in the C-terminal domain are shown as gray-filled c
phosphorylation are indicated. Mutant 289T is a deletion of the C-
a chimera between cAR2 and cAR1, with the first three N-termin
receptor from cAR1 (Kim and Devreotes, 1994). The cAR2-derived
phosphorylated when expressed in cells.
ery loose mounds are observed (Kim and Devreotes, 1994). e

Copyright © 2001 by Academic Press. All right
onsistent with this phenotype, expression of postaggrega-
ive or cell-type-specific genes is not detected.

Effect of Exogenous cAMP on car1/3-Null Cells
Expressing Mutant Receptors

As multicellular development is compromised in some of
the mutant strains, we examined the ability of exogenous
cAMP to rescue gene expression in these cells. During
development, aggregation-stage genes such as csA [encod-
ng the cell adhesion molecule contact sites A (gp80)] are
nduced in response to the pulses of cAMP produced during
ggregation and repressed in the multicellular stages by
igh, continuous cAMP (Jermyn et al., 1987; Mann and
irtel, 1987, 1989). Postaggregative genes are induced as the
ound forms in response to high, continuous cAMP (Firtel,

995; Mehdy and Firtel, 1985). The cell-type-specific genes
re induced subsequently and require both high cAMP and
he products of some postaggregative genes. In the case of
he prestalk gene ecmA, DIF is required for maximal
xpression (Williams et al., 1987). These conditions can be
imicked in suspension culture, allowing one to examine

he effects of exogenous cAMP on gene expression and
ypass certain developmental mutants (Jermyn et al., 1987;
ann and Firtel, 1987, 1989). Under such conditions, car1/

-null:Act15-cAR1 cells exhibit a pattern of gene expres-
ion similar to that observed previously for wild-type cells
Insall et al., 1994; Soede et al., 1994). As shown in Fig. 3,
sA is induced in suspension culture with or without

and 106C. A schematic diagram of cAR1 is shown. All 18 serine
. Serine clusters containing sites of basal and cAMP-induced
inal tail from residue 289 (Caterina et al., 1995a). Mutant 106C is
ansmembrane regions being from cAR2 and the remainder of the
ences of 106C are blackened. The 106C mutant is constitutively
89T
ircles
term
al tr
sequ
xogenous cAMP pulses, the latter presumably due to the

s of reproduction in any form reserved.
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229Receptor Activation of Gene Expression
endogenous cAMP oscillations. As expected, the addition of
high, continuous cAMP represses csA expression. GBF gene
xpression is induced maximally in cells given high, con-
inuous cAMP. LagC is induced by high, continuous cAMP

and not by pulsing alone and is expressed higher after 3 h
than after 6 h of treatment. SP60/cotC is maximally ex-
ressed after 6 h of cAMP treatment, whereas ecmA expres-
ion is highest with continual cAMP treatment in cells that
ave been previously pulsed. car1/3-null:Act15-289T cells
xhibit a high level of csA expression only in cells that are
ulsed with cAMP (Fig. 3). GBF expression is reduced in

cells that are starved compared to that in cells that are first
pulsed and then given high cAMP. As in car1/3-null:Act15-
cAR1 cells, expression of GBF is reduced after 6 h of
continuous cAMP. LagC expression, which is required for
the expression of the cell-type-specific genes (Dynes et al.,

FIG. 2. Phenotypes and developmental gene expression in car1/3-
car1/3-null cells expressing the wild-type cAR1 or the cAR1 recept
washed in 12 mM NaKPO4 (Mann and Firtel, 1987) and plated o
Photographs were taken and RNA was collected after 12, 16, and 24
(1.53 on a Nikon SMZ-U Zoom dissecting microscope). RNA was
SP60/cotC, and ecmA.
1994), is also expressed at high levels only in cells that are

Copyright © 2001 by Academic Press. All right
first pulsed and then given high cAMP for 3 h. Neither of
the cell-type-specific genes examined is expressed.

To determine whether exogenous cAMP could help re-
store the developmental potential of these strains, cells
were treated with extracellular cAMP in suspension and
then plated for multicellular development on PO4-buffered
gar. As shown in Fig. 4, car1/3-null:Act15-289T cells that

were starved for 4 h before being given high, continuous
cAMP for an additional 6 h developed only to the loose
mound stage by 15 h after plating, whereas similarly treated
car1/3-null:Act15-cAR1 cells formed fruiting bodies. car1/
3-null:Act15-289T cells that were pulsed with nanomolar
cAMP for 4 h prior treatment with micromolar cAMP for
6 h formed loose mounds with small tip-like early culmi-
nant structures 15 h after plating; some of these formed
very small fruiting bodies by 20 h. Thus, although the cAR1

cells expressing the cAR1 receptor mutants. Vegetatively growing
utants, 289T, cm1234, or 106C, from the Actin 15 promoter, were
KPO4-buffered agar for development at the same concentrations.
s indicated. All photographs were taken at the same magnification
fractionated on denaturing gels and probed with DNA from LagC,
null
or m
n Na

h, a
size-
C-terminus is not essential for the activation of GBF

s of reproduction in any form reserved.
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230 Briscoe et al.
activity, car1/3-null:Act15-289T cells are clearly defective
in cell-type-specific expression and morphogenesis. car1/3-
null:Act15-106C cells, which are unable to aggregate, ex-
press csA in response to cAMP pulsing. As with car1/3-null:
Act15-289T cells, GBF and LagC are induced by high cAMP
only in cells that were previously pulsed for 4 h. SP60/cotC
is expressed at almost wild-type levels, whereas ecmA
expression is very low, even in cells that were first pulsed
before being given high cAMP. Thus, cells expressing a
receptor lacking a C-terminal tail or the 106C chimeric
receptor are unable to properly induce cell-type-specific
gene expression, even in response to exogenous signals.
Interesting, car1/3-null:Act15-106C cells given a combina-
tion of pulsing and continuous cAMP are able to produce
multicellular aggregates. However, only very small fruiting
bodies are produced from the center of the loose aggregate,
with most of the cells not participating in morphogenesis
past the mound stage. This phenotype is consistent with
the inability of these cells to effectively induce prestalk
gene expression, which is thought to be required for tip
formation (Aubry and Firtel, 1999; Williams, 1995).

A Constitutively Phosphorylated Receptor Has a
Dominant Negative Effect in Wild-Type Cells

Wild-type cAR1 and the three mutant receptors were trans-
formed into wild-type KAx-3 cells. As previously reported
(Insall et al., 1994), we find that constitutive expression of the
ull-length wild-type receptor in KAx-3 cells has no effect on
evelopment. Of the mutant receptors, only 106C produced
n aberrant phenotype when expressed in wild-type cells (Fig.

FIG. 3. Effect of exogenous cAMP addition on gene expression in c
wild-type cAR1 or the cAR1 receptor mutants 289T or 106C were gr
cells/ml. Cells were either shaken (s) or pulsed (sP) with 30 nM cAMP
sP) or nonpulsed (s) cells as indicated and cells were shaken for addition
2 h. Samples were taken at 3 and 6 h (labeled 13 or 16, indicating 3
of the experiment (23 and 26). RNA was collected after 4 h of shakin
without 300 mM cAMP) as indicated. RNA was size separated and pr
). Although the KAx-3:Act15-106C cells aggregated normally

Copyright © 2001 by Academic Press. All right
nd expressed LagC at wild-type levels, the mounds started to
issipate by 16 h of development while simultaneously form-
ng multiple tiny tips on the surface of the mound. By 24 h, a
ew of the tips had developed into small fruiting bodies with
bnormally long stalks, while other tips did not develop
urther. Cell-type-specific gene expression in KAx-3:Act15-
06C cells was significantly attenuated compared to that in
ild-type cells, with low levels of ecmA detected only after
0 h of starvation. Notably, SP60/cotC expression oscillated,
ith moderate levels of the transcript present at 12 and 20 h

nd very low levels (observed upon a much longer exposure)
ccurring at 16 and 24 h. Probing with casein kinase 2 (CK2),
hich is constitutively present throughout development

Kikkawa et al., 1992), demonstrated that all lanes of the blot
ontained roughly equal quantities of RNA. Presumably, the
P60/cotC expression is a reflection of the developmental
tate of the cells, the very low level of expression at 16 h
orresponding to the time of mound dispersion.
We examined the ability of KAx-3:Act15-106C cells to

nduce gene expression in suspension culture in response to
xogenous cAMP. Interestingly, KAx-3:Act15-106C cells
id not express the pulse-induced gene csA without exog-
nous pulsing. Even with pulsing, the level of expression
as very reduced compared to car1/3-null cells expressing

cAR1 or 106C alone (Fig. 3). When KAx-3:Act15-106C cells
n suspension were treated with 300 mM cAMP after 4 h of

starvation, LagC and GBF were expressed to wild-type
levels, whereas SP60/cotC was not detectably expressed
and ecmA was induced to very low levels. When these cells
were subsequently plated for development, most arrested at
the mound stage. Aggregates that continued through devel-

xpressing cAR1 mutants. car1/3-null cells or KAx-3 cells expressing
axenically, washed, and resuspended in 12 mM NaKPO4 at 5 3 106

-min intervals for 4 h at 230 rpm. 300 mM cAMP was added to pulsed
mes with cAMP added to a final concentration of 150 mM cAMP every

of cAMP treatment). Some cells received no cAMP for the duration
th and without cAMP pulsing) and after a further 3 and 6 h (with and
with DNA from CsA, GBF, LagC, SP60/cotC, and ecmA.
ells e
own
at 10
al ti

or 6 h
g (wi
opment produced small fruiting bodies with abnormally

s of reproduction in any form reserved.



231Receptor Activation of Gene Expression
FIG. 4. Effect of pretreatment of strains with cAMP on developmental potential. 1 3 107 car1/3-null cells expressing wild-type cAR1,
289T, or 106C, or KAx-3 cells expressing the 106C cAR1 receptor from the experiment described in Fig. 3, were collected after 4 h of shaking
with or without cAMP pulses and a further 6 h of treatment with 300 mM cAMP. The cells were washed in sodium phosphate buffer before
being plated for development on NaKPO4-buffered agar. Photographs were taken at 15 and 20 h after plating, as indicated. The original

magnifications of each photograph are as shown.

Copyright © 2001 by Academic Press. All rights of reproduction in any form reserved.
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232 Briscoe et al.
long, thin stalks (Fig. 4). When the cells were first pulsed
with cAMP prior to addition of high cAMP, all genes tested
were expressed at near-wild-type levels, although the fruit-
ing bodies formed upon plating remained fairly small, with
elongated stalks. These results suggest that the 106C recep-
tor functions as a dominant negative in wild-type cells and
blocks both pulse-induced and cell-type-specific gene ex-
pression, which are regulated by independent pathways.

Effect of cAR1 Mutants on Tyrosine
Phosphorylation of STATa

As with cAMP-mediated activation of GBF function,
cAMP-mediated STATa activation is receptor-dependent but
does not require heterotrimeric G proteins (Araki et al., 1998).
To investigate the effect of the cAR1 mutants on STATa

FIG. 5. Phenotypes and developmental gene expression in KAx-3
ells expressing the receptor 106C from the Actin 15 promoter were

Photographs and RNA were collected after plating at the times indi
ecmA, and CK2. CK2 is constitutively expressed throughout develo
activation, cAR1/3-null cells expressing the receptor mutants

Copyright © 2001 by Academic Press. All right
ere pulsed for 4 h before being treated with high, continuous
AMP. As described by Araki et al. (1998), two forms of
yrosine-phosphorylated STATa are detected in wild-type
ells and in car1/3-null:Act15-cAR1 cells following cAMP

addition (Fig. 6). The higher-mobility form is tyrosine phos-
phorylated after 30 s, an event which has been reported to
correlate with nuclear translocation. The more slowly migrat-
ing form, designated Dd-STAT:pTyr1 by Araki et al. (1998),
ecomes tyrosine phosphorylated after 5 min stimulation by
AMP. This shift in mobility has been proposed to be due to
osttranslational modifications occurring in the nucleus. No-
ably, car1/3-null:Act15-106C exhibited constitutive tyrosine

phosphorylation of STAT5a in 4-h pulsed cells. Moreover, no
increase in tyrosine phosphorylation above this level nor the
appearance of Dd-STAT:pTyr1 was observed following cAMP

expressing the 106C receptor mutant. Axenically growing KAx-3
hed and plated on NaKPO4-buffered agar (pH 6.2) for development.
. RNA was size separated and probed with DNA from LagC, SP60,

nt (Kikkawa et al., 1992) and is used as a standard for RNA loading.
cells
was

cated
treatment. In contrast, KAx-3:Act15-106C cells exhibited a
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233Receptor Activation of Gene Expression
normal STATa activation response. car1/3-null:Act15-289T
and car1/3-null:Act15-cm1234 stimulate tyrosine phosphory-
lation of STATa in response to cAMP with kinetics similar to
those observed in car1/3-null:Act15-cAR1 cells. However, in
these strains, the relative level of the slower-migrating, hyper-
phosphorylated band is reduced compared to wild-type cells
(KAx-3). These results suggest two alternate models: that the
phosphorylated C-terminus of cAR1 may play a role in some
aspects of STATa phosphorylation or that the first intracellu-
lar loop of cAR1 may be specifically required for this process.
However, as cAR2 can complement many of the aggregation-
stage functions of cAR1 when expressed in car1/3-null cells
(Verkerke-van Wijk et al., 1998), it is also possible that the
structure of the chimera is sufficiently different from that of
the wild-type receptors to cause a conformational change that
results in a partially activated form sufficient to activate
pathways in the absence of a ligand.

DISCUSSION

Role of the C-Terminal Tail in Receptor-Mediated
Responses

In order for cells to progress past the loose mound stage,

FIG. 6. cAMP induction of STATa tyrosine phosphorylation. Expo-
entially growing Ax3, Ax3:Act15-106C, car1/3-null:Act15-car1,

car1/3-null:Act15-106C, car1/3-null:Act15-289T, and car1/3-null:
Act15-CM1234 cells in shaking suspension in NaKPO4 buffer were
ulsed with 30 nM cAMP for 4 h before addition of 300 mM cAMP for
he times indicated. Western blots using either anti-STATa or anti-
hosphotyrosine antibody were performed on STATa immunoprecipi-
ates as described previously (Araki et al., 1998).
GBF must be induced and activated to stimulate the expres- w

Copyright © 2001 by Academic Press. All right
ion of downstream genes. The micromolar levels of cAMP
hought to be present at the mound stage (Abe and Yanagi-
awa, 1983) activate GBF by signaling through cAR1 and
AR3, via a pathway that is distinct from that which
egulates aggregation. Aggregation is mediated by nanomo-
ar oscillatory pulses of cAMP that allow the receptor and
ownstream effector to alternate between active and inac-
ive states. Signal relay (activation of adenylyl cyclase),
hemotaxis, and pulse-induced gene expression require
eceptor-mediated, G-protein-dependent and -independent
athways. In contrast, STATa activation and postaggrega-
ive gene expression mediated through GBF are activated by
igh, continuous levels of cAMP acting through the same
eceptors but via a G-protein-independent pathway. One of
he major differences between the state of the receptor
uring aggregation and mound-stage development is that
AR1 in mound-stage cells is constitutively phosphorylated
n C-terminal serine residues in response to the high cAMP
evels and thus should be in a lower-affinity conformation.

As previously described, cells expressing cAR1 receptors
hat are defective in C-terminal tail phosphorylation are
ble to aggregate essentially normally. In this article, we
escribe the effects of mutations that affect cAR1 tail
hosphorylation on pathways required for multicellular
evelopment, including morphogenesis and cell-type-
pecific gene expression. Our data suggest that, although
hosphorylation of the tail is not essential for GBF-
ediated postaggregative gene expression, alteration of the
-terminal tail renders some receptor mutants unable to

ully replace wild-type cAR1 and does not allow efficient
ifferentiation beyond the mound stage. car1/3-null cells
xpressing the cAR1-289T receptor, in which the
-terminal tail is deleted, show a significant impairment in
evelopment: these cells arrest at the mound stage and lack
ell-type-specific gene expression in the absence or pres-
nce of exogenous cAMP when tested in suspension cul-
ures. Cells expressing cAR1-cm1234 in lieu of cAR1 and
AR3 also exhibit delayed, asynchronous development and
any aggregates arrest at the mound stage. These cells

xpress prespore-specific genes almost normally, but the
xpression of the prestalk-specific ecmA gene is reduced. As
restalk cell differentiation is needed for tip formation
Firtel, 1995; Loomis, 1996; Williams, 1995), this may
ccount for the morphological defect observed in these
ells. Whereas cAR1-289T has reduced stability (Kim et al.,
997), it is unlikely that this is the reason for the defects
bserved in these cells. A reduced level of cAR1 in wild-
ype cells exhibits normal GBF-mediated activation of gene
xpression and the expression of the cAR-dependent post-
ggregative gene LagC in car1/3-null:cAR1-289T cells is at
ormal levels, although it is delayed. Pulsing these cells for
everal hours restores some of the ability of the cells to
nduce postaggregative but not cell-type-specific genes.

These results present a convincing picture of a role for the
-terminal tail and possibly its phosphorylation in mediat-

ng these responses in the multicellular stages. Consistent

ith this conclusion, cells expressing cAR1-289T, in which
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234 Briscoe et al.
the C-terminal tail is deleted, exhibit significantly stronger
phenotypes than cells expressing a receptor in which the
phosphorylation sites in the tail are mutated. It is possible
that the C-terminal tail may not be important in directly
mediating these pathways (e.g., possibly by interacting with
downstream components or stabilizing the interaction of
such factors with other receptor domains), but it may play
a role in ligand-mediated structural changes of the receptor
that may be required for these functions. Similarly, the
effect of the serine mutations may be due not to the loss of
phosphorylation, but rather to changes in the structure of
the tail resulting from the substitutions and short internal
deletions. Our results suggest that the C-terminal tail is
involved in controlling cell-type-specific gene expression
that is separate from the activation of GBF function.

Cells expressing 106C in a car1/3-null background are
unable to aggregate. These cells can activate many postag-
gregative pathways if given exogenous cAMP, but are de-
fective in prestalk-specific gene expression. Although cells
constitutively expressing either cAR2 (data not shown) or
cAR1 with GBF in car1/3-null cells can activate postaggre-
ative gene expression, it is not a priori clear whether a
himeric receptor composed of parts of cAR1 and cAR2
hould affect receptor-mediated gene expression during
ulticellular development. It is possible that the chimeric

eceptor may have a sufficiently different structure than
ither of the very homologous parental receptors to affect
ownstream responses. These experiments show that cAR2
ediates postaggregative gene expression in response to

igh cAMP with the same efficiency as cAR1. In addition,
xpression of 106C in wild-type cells impairs multicellular
evelopmental but not aggregation. This result, while more
ifficult to interpret, is consistent with a role for either the
-terminal tail in receptor-mediated pathways involved in
ulticellular development or the state of the C-terminal

ail in the overall conformation of the receptor. It has been
roposed that G-protein-coupled receptors, like receptor
yrosine kinases, may oligomerize and such oligomers
ight reflect a more “active” receptor conformation (Cvejic

nd Devi, 1997; Overton and Blumer, 2000). Dimerization
as been proposed for several receptors in mammalian
ystems including the adrenergic receptor, opioid receptors,
nd chemokine receptors (Cvejic and Devi, 1997; Hebert et

al., 1996; Rodrı́guez-Frade et al., 1999), as well as the yeast
heromone receptor (Overton and Blumer, 2000). This may
lso occur with cAR1 (P.N.D., unpublished observations),
lthough this remains to be confirmed. If these models are
orrect, expression of 106C in wild-type cells may inhibit
he formation of functional wild-type:wild-type receptor
dimers,” thus preventing efficient multicellular develop-
ent. In support of this possibility, expression of a

ignaling-defective chemokine receptor CCR2b in HEK293
ells with the wild-type receptor exhibits a dominant nega-
ive effect arising from their interaction (Rodrı́guez-Frade et
l., 1999). However, in either scenario, the dominant nega-
ive effect of 106C is probably affected by competition

etween wild-type signaling by the endogenous receptor

Copyright © 2001 by Academic Press. All right
nd an interfering effect of 106C, the balance of which is
eflected in the phenotype. Sufficient exposure to cAMP
nder suspension conditions that allow cell–cell contact
ay permit wild-type signaling. 106C is capable of mediat-

ng cAMP signals, as car1/3-null:Act1-5106C cells induce
ene expression in slow-shake suspension assays in re-
ponse to exogenous cAMP. In wild-type KAx-3 cells ex-
ressing Act15-106C, cell signaling probably occurs
hrough both the endogenous receptor and 106C to differing
xtents.

Regulation of STATa Activation

Activation of STATa, indicated by tyrosine phosphoryla-
tion and concomitant nuclear translocation, takes place at a
time in development similar to that of GBF activation in
mound-stage cells when levels of cAMP are high and cAR1
is in a constitutively phosphorylated state. Analysis of
STATa tyrosine phosphorylation in car1/3-null cells over-
expressing the 106C receptor shows that the STATa protein
is constitutively tyrosine phosphorylated, with no further
phosphorylation occurring upon cAMP stimulation. Inter-
estingly, wild-type cells expressing the 106C receptor as
well as endogenous cAR1 exhibit a normal STATa re-
sponse. One possible explanation is that the cAR1 wild-
type/106C receptor dimers, if they form, may function as a
wild-type receptor with respect to STATa activation.

To account for receptor-mediated processes that are
G-protein-independent, we previously proposed that the
cARs may act as docking sites for effectors in addition to
heterotrimeric G proteins and thus may function in a
manner analogous to that of receptor tyrosine kinases in
binding signaling components when activated, leading to
stimulation of downstream pathways (Hereld et al., 1994;
Schnitzler et al., 1994, 1995). Our results with the 106C
eceptor suggest that the phosphorylated C-terminus may
unction as part of a docking site for STATa and/or the
s-yet-unidentified tyrosine kinase that phosphorylates
TATa. However, the phosphorylated C-terminus is not
ssential for STATa tyrosine phosphorylation, as car1/3-

null cells expressing either 289T or cm1234 exhibit normal
cAMP-mediated STATa tyrosine phosphorylation. Interest-
ingly, the amount of the hyperphosphorylated, slower-
migrating STATa form in cAR1/3-null:Act15-106C is re-
duced compared to that in wild-type cells and is not
stimulated by cAMP. This observation is reminiscent of
gb-null cells, in which cAMP stimulates the tyrosine phos-
phorylation and nuclear translocation of STATa, but the
amount of hyperphosphorylated, slower-migrating STATa
is reduced (Araki et al., 1998). This finding led to the
suggestion that this second phosphorylation event is
G-protein-mediated. It is possible that the modified 106C
receptor may not be able to interact efficiently with the G
protein subunits and/or other proteins necessary to affect
the second modification.

STATa is a repressor of ecmB expression and, although it

binds to activator sequences in the ecmA promoter in vitro,
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235Receptor Activation of Gene Expression
STATa is not an activator of ecmA in vivo. STATa is
equired for the proper regulation of other developmental
esponses, including aggregation and culmination (Mo-
anty et al., 1999). There is obviously a defect in the ability
f cAMP to activate ecmA expression in cAR1/3-null:

Act15-106C cells when placed in shaking culture; however,
this is unlikely to be due to the defects in cAMP-mediated
STATa tyrosine phosphorylation. We also observed reduced
expression of SP60 and ecmA in cAR1/3-null:Act15-289T
cells. Although these cells displayed normal activation of
STATa in response to cAMP, it is also possible that the
289T receptor could affect activation of other STAT pro-
teins which may play a role in expression of other cell-type-
specific genes. It is probable that the receptor C-terminal
tail mutations affect an interaction(s) with one or more
as-yet-unidentified components of cAMP receptor-
mediated pathways needed for cell-type-specific gene ex-
pression.

In conclusion, our analysis of receptor mutants suggests
that regulation of morphogenesis and postaggregative gene
expression are mediated by responses that occur via path-
ways distinct from those that regulate aggregation-stage
pathways. The C-terminal tail of the receptor appears to
play an important role in mediating these responses,
through as-yet-unidentified components. Our observations
provide new insights into the numerous responses that are
regulated by cAMP and cAR1 and how the receptor might
control such a diverse set of developmental functions.
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