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CHAPTER 64
Signal Transduction by G-Proteins in
Dictyostelium discoideum

L. Wu, C. GaskiIns, R. GUNDERSEN, J.A. HADWIGER, R.L. JOHNSON,
G.S. PrrT, R.A. FIrTEL, and P.N. DEVREOTES

A. Introduction

G-protein-linked signal transduction pathways play essential roles during the
differentiation process of Dictyostelium discoideum, a simple developing
eucaryotic organism. These transmembrane signaling systems are essentially
the same as those in mammalian cells, and there are simple methods to
disrupt genes by homologous recombination and to create cell lines
expressing mutant genes. In addition, Dictyostelium is easy to grow, and
development is synchronous, allowing one to readily obtain 10! cells for
biochemical studies. Thus, Dictyostelium provides a model system to study
G-protein-linked signal transduction.

B. Signal Transduction in Dictyostelium

The life cycle of Dictyostelium consists of distinct growth and developmental
phases. In the developmental phase, triggered by starvation, about 10°
individual amoebae aggregate to form a multicellular structure. This process
is organized by extracellular adenosine 3’,5’-monophosphate (cAMP) that is
secreted by cells at aggregation centers. Surrounding cells respond by
moving chemotactically toward the signaling cells and by relaying the signal
to cells further from the center. The resulting multicellular aggregate
undergoes further morphogenesis, in which the signaling system continues to
play a role. Cells in the aggregate differentiate into prestalk and prespore
cells which eventually form the stalk and spore mass of a fruiting body (Fig.
1). This cell-cell signaling process occurs via cAMP binding to cell surface
receptors, which in turn triggers numerous responses (DEVREOTEs 1989;
FIRTEL 1991).

Genes encoding four surface cAMP receptors (cARs), which comprise a
family highly related by sequence, have been identified (KLEIN et al. 1988;
Saxe et al. 1991a,b). Each gene is expressed at a different time in
development (Fig. 1). cAR1 mRNA is present mainly during early
aggregation, although two additional transcripts are induced later in
development at much lower levels (SAxE et al. 1991a). cAR3 is expressed
next, being induced at late aggregation with maximal expression occurring at
the mound stage and continuing through later development at reduced
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S levels. The cAR2 transcript is enriched in prestalk cells and is expressed
initially at the mound stage but is present predominantly at the slug stage
(SaxE et al. 1991a). cAR4 is expressed lastly, and it appears during the
| culmination (A. KIMMEL, personal communication).
All of these receptors contain seven putative transmembrane domains, a
characteristic of receptors that are linked to G-proteins, such as the f-
adrenergic receptor and rhodopsin. It has been shown that cAR1 is needed
for normal development (SuN et al. 1990; Sun and DEvreoTEs 1991). Cells
‘ that lack cAR1 do not aggregate and have almost no detectable surface
cAMP binding sites. The expression of early genes in the cAR1-null cells is
delayed, and late gene expression is blocked. Preliminary results suggest
that the other cARs also serve critical functions in the signaling processes

) and in controlling development in this organism (JOHNSON et al. 1993; SAXE
et al. 1993).

tyostelium

, and fruiting bodies. Open bars, developmental
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| C. Diversity of G-Proteins in Dictyostelium

By using oligonucleotides based on the sequences of the conserved GTP-
binding domains of G-protein a subunits to screen a Dictyostelium cDNA
libary or to perform polymerase chain reactions (PCR), genes encoding
eight G-protein « subunits have been cloned (PuriLLo et al. 1989;
' HADWIGER et al. 1991; Wu and DEvreoTES 1991; PupiLLO and DEVREOTES, inr
preparation; Wu et al., in preparation; CusItr et al. 1992). Comparison of
the predicted amino acid sequences indicates that the eight G-protein a
subunits share 30%-50% identity to each other and to mammalian G-
’ protein a subunits. The eight asubunits do not fall into any obvious subtypes
related to the four a subunit classes, Gs, Gi, Gg, and Gy, found in higher
eucaryotes.

Despite the relatively low degree of identity among these G-proteins
overall, some regions are highly conserved. Figure 2 shows the sequence
comparison of the most conserved regions between the Dictyostelium Ga
subunits and several mammalian Ga subunit subtypes. These sequence
motifs are believed to be important for G-protein function. Ga4 and Ga7
have unusual amino acids in region A (...GAGESG...), which is
involved in By release and GTP hydrolysis (SiMonN et al. 1991). Ga8,
moreover, possesses some very interesting and unusual features. The amino
acid sequences of the N-terminal portion (about 75% of the molecule) of
Ga8 is similar to other Ga subunits, but its C-terminus portion has an
additional 50 amino acids consisting of long stretches of Asn and Ser. Such
stretches of repeated sequence have been observed for several cAMP
receptors, adenylyl cyclase genes, and the catalytic subunit of cAMP-
dependent protein kinase in Dictyostelium (JoHnsoN et al. 1993; Prrr
et al. 1992; MANN and FirteL 1991), but to our knowledge Ga8 is the
] first G-protein a subunit identified possessing this motif. Moreover, the
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Region A Region C Region G Region T

Consensus: KLLLLGAGESGKSTIXKQMK DVGGQR LFLNKXD TCATDT

Gal: KLLLLGAGESGKSTIAKQMK DVGGQR LFLNKRD TCATDT
Ga2: KLLLLGAGESGKSTISKQMK DVGGQR LFLNKSD TCATDT
Ga4: KLLLLGPGESGKSTIFKQMK DVGGQR LFLNKKD TCAVDT
Ga5: KLLLLGAGESGKSTIFKQMK DVGGQR YFLNKVD TCAIDT
Ga6: GAGESGKSTIFKQLK DVGGQR

Ga7: KLLLLGTGDSGKSTVVKQMK DVAGQR LFLNKRD TTATDT
Ga8: RILLLGAGESGKSTVVKQLK DVGGQR LVLNKKD IAARYK
Gs: RLLLLGAGESGKSTIVKQMR DVGGQR LFLNKQD TCAVDT
Gi: KLLLLGAGESGKSTIVKQMK DVGGQR LFLNKKD TCATDT
Gq: KLLLLGTGESGKSTFIKQMR DVGGQR LFLNKKD TCATDT
G12: KILLLGAGESGKSTFLKQMR DVGGQR LFLNKKD TTAIDT

Fig. 2. Amino acid sequence comparison of Dictyostelium Gal-Ga8 and mam-
malian Ga subunits in the most conserved regions. Ga3 sequence is not shown and is
cloned by PupiLLo and DEVREOTES (in preparation). The complete sequence of Gab
has not been determined. The sequences of Gal and Ga2 are taken from PUPILLO
et al., the sequences of Gad and Ga5 are taken from HADWIGER et al. (1991) and

HapwiGER and FIRTEL (in preparation), and the sequences of Gs, Gi, Gq, and G12
are taken from SiMoN et al. (1991)

well-conserved TCATDT motif of Ga subunits (SiMon et al. 1991) is totally
missing in Ga8. It has been suggested that the C-terminal region of the G
protein is involved in receptor interactions (SIMON et al. 1991). This
suggestion is supported by the observation that modification of the « subunit
of the G; class by pertussis toxin blocks its interaction with receptor, and
antibodies or peptides that specifically interact with C-terminal regions,
including the TCATDT region, of some of the Ga proteins also block
interaction with receptor (DEretic and Hamm 1987 ; SULLIVAN et al. 1987;
MASTERS et al. 1988). The unusual structure of Ga8 at the C-terminal region
may suggest that Ga8 interacts with a structurally different receptor and
thus represents a very different class of G-protein superfamily.

Northern blot analyses indicate that each of these genes has a distinct
pattern of expression during development of Dictyostelium (Fig. 3). Most of
these genes hybridize to multiple RNA species that are presumably driven
by different promoters. Ga6 is expressed primarily in vegetative cells. Upon
starvation, the level of Ga6 mRNA declines rapidly. Ga3 mRNA is
detected mainly in growing and very early aggregation stages. Gal is
expressed at moderate levels in vegetative cells and increases to a maximal
level at 10-12h. Ga2 is expressed at very low levels in vegetative cells.
Upon initiation of development, Ga2 RNA levels increase, reaching a
maximum level during aggregation and then declining. A second transcript
of Ga2 is preferentially expressed late in development in the anterior
prestalk region as determined by lacZ expression studies (CARREL and
FIRTEL, in preparation). Ga8 has a similar expression pattern as Ga2. The
expression time course of both Ga2 and Ga8 parallels that of cAR1 during
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Fig. 3. Developmental expression of Ga subunits during Dictyostelium development.
The relative width of the bar indicates the relative level of mRNA detected at the
time indicated. Above, the time course of the development. The expression pattern
of Gal and Ga2 is from PupiLLO et al. (1989), of Ga3 from PupiLLo and DEVREOTES
(in preparation), of Ga4 and Ga5 from HADWIGER et al. (1991), of Ga6, Ga7, and
Ga8 from Wu and DevReoTES (1991) and Cusrtr et al. (1992). See text for a detailed
explanation

early development. The level of Ga7 peaks in late aggregation and early
mound stages, and declines thereafter. Finally, Ga4 and Ga5 are
synthesized predominantly in late development when the multicellular
structure is undergoing differentiation, although Ga4 is also expressed at
low levels in vegetative cells.

The presence of at least eight G-protein subtypes during development is
intriguing. It is unclear why there is such a diversity of G-proteins in the
slime mold, and whether they are functionally redundant. The distinct time
course of expression of these G-proteins in combination with the fact that
the functions of Ga2 and Ga4 cannot be replaced by other G-proteins (see
below) suggest that each of these proteins is probably involved in a different
signal transduction pathway and thus plays a distinct role.

cDNA encoding for one G-protein # subunit has been isolated (LiLLy
et al. 1993). The predicted amino acid sequences of Gf share an exten-
sive degree of identity to its mammalian counterpart, and it is expressed
throughout the growth and developmental stages.
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cAR1(cAR2, cAR3) cARX

/N
VAN

Ca'" influx G? (B PLC

Ga2 phosphorylation  Cytosolic protein GC

cAR phosphorylation ACA Actin polymerization
LLB Gene expression

Fig. 4. The proposed model for signal transduction pathways during aggregation.
See text for explanation. cAR, cAMP receptor; LLB, loss of ligand binding; ACA,
adenylyl cyclase in aggregation; PLC, phospholipase C; GC, guanylyl cyclase

D. Roles of G-Proteins in Signal Transduction Processes

A number of developmentally defective mutants have been isolated in
Dictyostelium. In the frigid A (fgdA) mutants, the guanine nucleotide effect
on cAMP binding is greatly reduced and basal and cAMP-stimulated
GTPase activities are lowered (KESBEKE et al. 1988). Molecular cloning of
the Ga2 gene indicates that the defective alleles in fgdA mutants reside in
Ga2 (Kumagal et al. 1989). A gene-targeting experiment has generated
ga2-null cells that display same phenotypes as fgdA (Kumacar et al. 1991).
The studies with these ga2-null mutant cells have shown clearly that Ga2, in
coupling to a cAMP receptor, plays an important role in signaling and
development. A proposed pathway in early aggregation stage of the
Dictyostelium development is shown in Fig. 4.

The ga2-null cells do not aggregate and lack cAMP-mediated activation
of adenylyl cyclase, guanylyl cyclase, phosphatidylinositol (PI)-specific
phospholipase C (PLC), and regulation of gene expression (KESBEKE et al.
1988; SNAAR-JAGALSKA et al. 1988; KamAGar et al. 1991; OxaIcHI et al.
1992). They also display a loss of GTP-mediated decrease in receptor
affinity for cAMP but have no effect on chemotaxis to folate or folate
activation of guanylyl cyclase (Kumaaat et al. 1991), suggesting that Ga2 is
coupled to a cAMP receptor but not to folate receptors. These phenotypes
can be rescued by transformation with a vector expressing Ga2, indicating
that the defects are caused by the absence of Ga2. It has also been
demonstrated that Ga2 is required for actin polymerization (HALL et al.
1989). There are several cAMP receptor-mediated responses, however, that
appear to be independent of Ga2 and will be discussed later (see below).

On stimulation of cells with cAMP, Ga2 is phosphorylated on one or
more serine residues, resulting in an alteration of its electrophoretic mobility
(GunpERSEN and DEVREOTES 1990). Figure 5 shows a cAMP dose response
of the Ga2 mobility shift. Triggered by increased occupancy of the surface
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Fig. 5. The cAMP dose response of the Ga2 mobility shift (phosphorylation) on
SDS-PAGE. Aggregation-competent cells were stimulated with various
concentrations of cAMP for 1min, and proteins were isolated and subjected to
immunoblot for Ga2

cAMP receptor, phosphorylation of Ga2 is rapid and transient, coinciding
with the time course of activation of physiological responses. The cAMP
receptor is essential for Ga2 phosphorylation since cells that do not express
the receptor do not phosphorylate Ga2. The site of phosphorylation has
been mapped thus far to the N-terminal region of Ga2 (GUNDERSEN and
DEVREOTES, unpublished results), which contains 12 serine residues, 4 of
which are highly conserved among o subunits. It is unclear what role the
phosphorylation of Ga2 plays. Its transient kinetics suggest that it might be
involved in the activation of the protein, yet phosphorylation of Ga2 still
occurs in certain fgdA mutants (R. GUNDERSEN, unpublished results). On
the other hand, phosphorylation of Ga2 may affect inherent a subunit
functions, such as GTP hydrolysis or binding to the fy complex, or it may be
important in receptor and/or effector recognition.

Further analysis of the functions of Ga2 has been obtained by
expressing Ga2 containing amino acid substitutions in the highly conserved
GTP-binding domains (OxaIlcH1 et al. 1992). Two of the mutants ana-
lyzed are a G40V change in the GAGES domain and a Q208L change in
GGQORS region. The equivalent mutations in ras and mammalian Ga
subunit Gas have been shown to substantially reduce the intrinsic GTPase
activity of these proteins. The Q2271 or R201C in Gas results in a
constitutive, dominant activating phenotype presumably because the protein
is “locked” in the on or activating configuration (LANDIS et al. 1989).
Expression of Ga2 proteins carrying these mutations in wild-type cells
results in an aggregation-deficient phenotype, and the activation of guanylyl
cyclase and phospholipase C is almost completely blocked and the activation
of adenylyl cyclase is substantially inhibited (Fig. 6). Neither of the mutant
proteins is capable of complementing ga2-null cells. Overexpression of wild-
type Ga2 results in a cAMP-dependent stimulation of a maximum level of
guanylyl cyclase activation and an inhibition of the adenylyl cyclase
activation (OxaIcHI et al. 1992).
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Fig. 6. Effect of amino acid substitutions in Ga2 on the activation of adenylyl
cyclase and guanylyl cyclase. Wild-type KAx-3 cells containing expression vectors
expressing wild-type Ga2 or Ga2 substitution mutations (G40V and Q208L) were
plated on nonnutrient agar. Cells were harvested, and cAMP activation of adenylyl
cyclase and guanylyl cyclase was assayed. The maximum levels of activation, as
determined by the maximum level of cAMP or ¢<GMP produced, were compared.
The value for control KAX-3 cells (CON) was given a value of 1.0. Ga2, Cells
transformed with wild-type Go2; ga2, ga2 null cells. In all Ga2 transformants Ga?2
protein was over-expressed tenfolds compared to the level found in control cells. See
OkaicHi et al. (1992) for details

These results suggest that both the G40V and Q208L mutations have a
dominant negative phenotype in vivo, in contrast to the expected dominant
activating phenotype seen with similar Ga subunit mutations in other cells.
The cAMP receptor-mediated effector pathways that require Ga2, such as
adenylyl and guanylyl cyclase, adapt rapidly during persistent cAMP
stimulation. Perhaps the activated Ga proteins cause a low-level constitutive
activation of these pathways that in turn results in the pathway being
constitutively adapted or down-regulated.

As in mammalian cells, adenylyl cyclase activity in Dictyostelium is
regulated by G-proteins. This suggestion was initially demonstrated by the
ability of GTP, Gpp(NH)p (guanyl-5'-yl imidodiphosphate), and GTP}S to
activate and GDP/S to inactivate adenylyl cyclase in lysates of aggregation-
competent cells (THEBEIT et al. 1986). Thus, it was predicted that the
adenylyl cyclase present during aggregation would closely resemble
mammalian adenylyl cyclase. Recently, the gene encoding this adenylyl
cyclase, ACA, has been isolated (Prrt et al. 1992). Analysis of the predicted
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Fig. 7A,B. Topological model and expression of ACA and phenotype of aca-null
cells. A Model of ACA. Vertical bars, the plasma membrane; N, the amino termini.
B Top, the developmentally regulated expression of ACA, showing the relative
amount of mRNA expressed at time indicated; bottom, schematic developmental
phenotype of wild-type and aca-null cells to show that the disruption of ACA locus
results in the loss of the capability to aggregate

amino acid sequence demonstrates that the ACA gene product shares
significant topological and sequence homology with its mammalian
counterparts. These molecules have two large hydrophobic domains, each of
which contains six transmembrane spanning domains and two homologous
hydrophilic domains (Fig. 7). Sequence homology among mammalian
adenylyl cyclases and between mammalian adenylyl cyclase and ACA is
highest in the hydrophilic domains. The two hydrophilic domains in ACA
are about 50% similar at the amino acid level to each other and to their
counterparts within the mammalian adenylyl cyclases (PrrT et al. 1992).
ACA is expressed maximumly during the aggregation stage, decreases after
aggregation, and is induced again in the later stage of development (Fig. 7).
An aca-null cell line has been created by gene disruption. These cells have
little detectable adenylyl cyclase activity and fail to aggregate (Fig. 7),
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demonstrating that ACA is that coordinates
aggregation.

The mechanism by which adenylyl cyclase is activated through cAMP
binding to cell surface receptors at the aggregation stage is not understood.
As described earlier, Ga2 is required for this function since ga2-null cells
lack cAMP-stimulated adenylyl cyclase activity in vivo. However,
biochemical evidence indicates that guanine nucleotides can regulate
adenylyl cyclase in membranes prepared from wild-type cells as well as from
cells of ga2-null, suggesting that adenylyl cyclase may not be a direct
effector of Ga2. Additional experiments have shown that the activation of
adenylyl cyclase also requires a cytosolic protein (THEIBERT and DEVREOTES
1986).

There are two possible mechanisms consistent with the known
mechanisms of adenylyl cyclase activation in other systems that might
explain these data. One possibility is that a G-protein containing an «
subunit other than Ga2 is the direct activator of adenylyl cyclase and the
Ga2-mediated signaling pathways play a role in its activation. It seems clear
that Ga2 directly activates the PI-PLC, and a product of this reaction may
lead to activation of adenylyl cyclase. Alternatively, adenylyl cyclase may be
activated by fy subunits which are released from Ga2. This possibility is
consistent with the fact that overexpression of Ga2, which might act as a
sink for free fy subunits released upon G-protein activation, results in an
inhibition of the ability to activate adenylyl cyclase (OxkaicHi et al. 1992). In
such a model the activation of adenylyl cyclase by GTPyS in ga2-null
membranes would be mediated through the release of fy subunits from
other G-proteins, such as those containing Gal, Ga7, and Ga8, which are
known to be preferentially expressed at this time during development.
Further in vitro analysis is required to distinguish between these two
possibilities as well as other mechanisms.

Ga2 appears to be important for many key transmembrane signaling
processes. However, it is not required for response to folic acid (see above)
and several cAMP-stimulated responses occurring in its absence (Fig. 4),
suggesting that other G-proteins might mediate these functions. It has been
shown that cAMP receptor-mediated Ca”** uptake is independent of Ga2
(MILNE and CoukeLL 1991). Phosphorylation of Ga2, which is mediated by
cARI, seems to be independent of functional Ga2 since the protein can still
be phosphorylated in certain fgdA alleles. The cAMP-induced
phosphorylation of cAMP receptors and the loss of ligand binding, which
are components of the desensitization process, are not affected in cells that
lack Ga2 protein (VAN HAASTERT et al. 1992).

The discovery of at least eight G-protein a subunits in Dictyostelium has
provided candidates for the G-proteins that might fulfill these specific roles.
The gene-targeting technique provides a powerful tool to investigate the
functions of individual G-proteins. Cell lines lacking each subunit have
recently been generated and are being analyzed. In the case of Gal, loss of
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Gal expression results in no visible growth or developmental defects
(Kumagal et al. 1991), suggesting that some of them are functionally
redundant or have subtle effects. Thus, it may be necessary to construct cells
that are deficient in multiple G-protein a subunits to address the possibility
of redundancy.

E. Roles of G-Proteins in Morphogenesis
and Differentiation

As shown in Fig. 3, both Ga4 and GaS are expressed at high levels at the
time of mound and tip formation following aggregation, implying that they
might play a role during this stage of development. The role of Ga4 in
development was investigated by creating and examining ga4-null mutants
and cells that overexpress the Ga4 gene (HApwiGER and FIRTEL 1992). As
might be expected from the temporal pattern of expression, the early stages
of development appear normal in ga4-null cells. They aggregate and form
mounds that differentiate into an erect finger morphology similar to wild-
types cells (Fig. 8). In contrast to wild-type development in which the finger
falls over forming a migrating slug, the apical portion of the tip in the
ga4-null cells continues to elongate while the basal region remains more
rounded. In many cases, the apical projection becomes thinner, while in
other cases it falls back on itself, producing a “‘knotted” structure (Fig. 8).
Similarly, the overexpressing strain shows normal mound formation and
then produces a very abnormal ““fruiting-body-like”” structure (Fig. 8). The
ga4-null cells do not produce mature spores, while the overexpressor cells
show a 25-fold reduction in total number of spores produced. The ga4-null
cells can be complemented with a low copy number Ga4-expression vector,
restoring the normal morphological differentiation and the production of
mature spores as wild-type cells.

Further insight into the possible role of Ga4 comes from the analysis of
the temporal and spatial late gene expression in ga4-null cells. Northern blot
analysis indicates that the prestalk-specific ras gene DdrasD is expressed at
50% of wild-type levels, and the prespore-specific protein SP60 mRNA is
reduced to very low levels. Expression of DdrasD and SP60 are
preferentially localized to the anterior and more basal regions, respectively,
as in wild-type cells, suggesting that the initial spatial patterning of both of
these genes is not affected in ga4-null cells.

Both ¢cAMP-induced prestalk and prespore-specific genes can also be
induced in a shaken suspension of cells, a method that enables one to bypass
the effects of a mutation on morphogenesis (McHDY and FIRTEL 1985).
Under these conditions, the induction of the cAMP-inducible prestalk gene
DdrasD is reduced but that of another cAMP-inducible prestalk gene,
pst-cath/CP2, is not affected, while the expression of SP60 is still only
induced to a low level. To distinguish cell-autonomous and non-cell-
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autonomous function of Ga4, wild-type and mutant strains or two mutant
strains are mixed in various proportions and the developmental potential of
both cell types examined. When the ga4-null cells or the Gad-
overexpressing cells are mixed with wild-type cells, or the ga4-null cells are
mixed with the overexpressor cells, at a 50: 50 ratio, morphologically normal
fruiting bodies are observed. The Ga4-overexpressing cells in the chimera
with either wild-type cells or ga4-null cells produced spores at a level similar
to that of wild-type cells. The ga4-null cells also produce spores in either
chimera, although the level of spore formation was only approximately
3%—4% of that of wild-type cells, indicating that the wild-type and Ga4-
overexpressing cells can partially complement ga4-null cells. In these
chimeras, ga4-null cells are found in all of the cell types of the mature
fruiting body except that there appear to be a slightly lower level in the
spore mass and a slightly higher level in the stalk.

These combined results suggest that Gad is essential for proper
development during culmination and spore production. The function of Ga4
appears to be non-cell-autonomous because ga4-null cells can participate in
the formation of a wild-type fruiting body in chimeras with either wild-type
or overexpressing cells, and the wild-type cells can partially complement the
spore production of ga4-null cells. Thus Ga4 may be involved in an
extracellular signaling process in which Ga4-producing cells are required for
producing either an intercellular soluble signal or a cell-cell surface molecule
that directly interacts with downstream cells. Studies with Ga4 promoter/
lacZ reporter gene indicate that Ga4 is expressed at a detectable level in
only a small subpopulation of cells within the multicellular aggregate that
are known as anteriorlike cells. Although we cannot exclude the fact that
Gad may also be expressed at a very low level in prespore cells and possibly
also in the general prestalk population as a whole, the expression of Ga4 in
anterior-like cells is probably important in controlling both the spatial
patterning in Dictyostelium multicellular morphogenesis and prespore
differentiation.

F. Conclusions and Perspectives

In Dictyostelium, genes encoding four surface receptors, eight G-protein a
subunits and one # subunit, and an adenylyl cyclase have been identified.

Fig. 8A—H. Developmental morphology of ga4-null, Ga4-overexpressor, and wild-
type cells. Logarithmically grown cells were washed and plated for development on
nonnutrient agar. A Wild-type cells at the finger stage (14 h after starvation); B ga4
null cells at finger stage (15h after starvation); C wild-type cells at fruiting-body
stage (>26h after starvation); D, E ga4 cells at final morphological stage (photo
taken at 36 h); F ga4 null cells complemented with a low copy of the Ga4 expression
vector at the fruiting-body stage (photo taken at 36h); G, H Ga4-overexpressing
cells at the final morphological stage (photo taken at 36h). See HapwiGER and
FIrTEL (1992) for details
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The rather large diversity of the a subunits indicates that they may be
involved in a variety of signal transduction pathways. The characterization
of several of these genes, cAR1, Ga2, Ga4, and adenylyl cyclase, has shown
that they are essential for the proper development in Dictyostelium. Gene-
targeting and other genetic and molecular techniques have provided
powerful tools to investigate the functions of these proteins. Since the
mechanisms of signaling processes in Dictyostelium are very similar to those
in mammalian cells, the molecular and genetic dissection of these processes
will elucidate their possible roles not only in Dictyostelium but also in other
developmental systems.
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