Visualization of G Protein βγ Dimers Using Bimolecular Fluorescence Complementation Demonstrates Roles for Both β and γ in Subcellular Targeting*$$

Received for publication, February 9, 2004, and in revised form, May 3, 2004
Published, JBC Papers in Press, May 10, 2004, DOI 10.1074/jbc.M401432200

Thomas R. Hynes‡, Linnan Tang§, Stacy M. Mervine‡, Jonathan L. Sabo‡, Evan A. Yost‡, Peter N. Devreotes§, and Catherine H. Berlot¶

From the ¶The Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2623 and §The Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205

To investigate the role of subcellular localization in regulating the specificity of G protein βγ signaling, we have applied the strategy of bimolecular fluorescence complementation (BiFC) to visualize βγ dimers in vivo. We fused an amino-terminal yellow fluorescent protein fragment to β and a carboxyl-terminal yellow fluorescent protein fragment to γ. When expressed together, these two proteins produced a fluorescent signal in human embryonic kidney 293 cells that was not obtained with either subunit alone. Fluorescence was dependent on βγ assembly in that it was not obtained using β2 and γ1, which do not form a functional dimer. In addition to assembly, BiFC βγ complexes were functional as demonstrated by more specific plasma membrane labeling than was obtained with individually tagged fluorescent β and γ subunits and by their abilities to potentiate activation of adenylyl cyclase by αs in COS-7 cells. To investigate isoform-dependent targeting specificity, the localization patterns of dimers formed by pair-wise combinations of three different β subunits with three different γ subunits were compared. BiFC βγ complexes containing either β1 or β2 localized to the plasma membrane, whereas those containing β2 accumulated in the cytosol or on intracellular membranes. These results indicate that the β subunit can direct trafficking of the γ subunit. Taken together with previous observations, these results show that the G protein α, β, and γ subunits all play roles in targeting each other. This method of specifically visualizing βγ dimers will have many applications in sorting out roles for particular βγ complexes in a wide variety of cell types.

More than a thousand G protein-coupled receptors play roles in a vast range of biological processes. An important but poorly understood issue is how signaling specificity is maintained in vivo. Most combinations of the 5 G protein β subunits and 12 γ subunits that have been identified in mammals (1) can form dimers in vitro that exhibit similar abilities to modulate the activities of effectors such as adenylyl cyclase (2), phosphodiesterase C (3), and G protein-gated inwardly rectifying K+ channels (4). However, emerging evidence suggests that the specificity of receptor-G protein signaling is determined by specific αβγ combinations (5). Inactivation of specific G protein subunits in vivo using antisense (6–10) and ribozyme (11, 12) strategies has demonstrated a remarkable specificity of interaction between receptors, αβγ combinations, and effectors. For instance, ribosome-mediated suppression of γ2 in HEK-293 cells specifically reduces expression of β2 and disrupts activation of Go, by β-adrenergic, but not prostaglandin E2 receptors (11, 12). Knockout of γ2 in the mouse results in behavioral changes and reductions in the level of αs bound in the striatum (13).

Reconstitution experiments indicate clear differences in the αβγ combinations that are preferred by particular receptors (14–18). However, these differences generally do not appear to be great enough to account for the large effects seen with in vivo knockout models such as the γ-deficient mouse (19). In addition, studies of how G protein subunits are organized and localized in vivo suggest that cell type-specific expression and subcellular localization also play major roles in signaling specificity (19). In support of this idea, rescue of αs and αq mutants with decreased affinities for βγ by co-expressed βγ dimers indicates differences in the abilities of particular βγ dimers to target these α subunits to the plasma membrane (20).

The G protein subunits are peripheral membrane proteins that associate with the plasma membrane as a result of fatty acid modifications and interaction with each other. Targeting of β subunits to the plasma membrane requires association with prenylated γ subunits (21). α subunits attach to the plasma membrane as a result of amino-terminal palmitoylation and/or myristoylation and association with βγ subunits (22). A γ subunit that is mislocalized to the mitochondria can cause α and β to mislocate (23). Conversely, when αs is targeted to the mitochondria, B1γ2 follows (24). A role for the β subunit in targeting G proteins has not been reported.

Here we apply the strategy of bimolecular fluorescence complementation (BiFC) (25) to visualize specific βγ dimers in vivo. BiFC involves the production of a fluorescent signal by two nonfluorescent fragments of YFP when they are brought together by interactions between proteins fused to each fragment. We fused an amino-terminal YFP fragment to β and a carboxyl-terminal YFP fragment to γ. When expressed together, these two proteins produce a fluorescent signal in HEK-293 cells that is not obtained with either subunit alone. This

* This work was supported by National Institutes of Health Grant GM50369. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

$$ The on-line version of this article (available at http://www.jbc.org) contains Supplemental Video 1.

‡ To whom correspondence should be addressed: The Weis Center for Research, Geisinger Clinic, 100 North Academy Ave., Danville, PA 17822-2623. Tel.: 570-271-8661; Fax: 570-271-6701; E-mail: cbberlot@geisinger.edu.

3 The abbreviations used are: BiFC, bimolecular fluorescence complementation; GFP, green fluorescent protein; YFP, yellow fluorescent protein; CFP, cyan fluorescent protein; mRFP, monomeric red fluorescent protein; HEK cells, human embryonic kidney cells; ECFP, enhanced CFP; RGS, regulator of G protein signaling.
procedure enables visualization of βγ pairs that form complexes, producing no fluorescence for a βγ combination known to be unable to assemble. BiFC βγ complexes were functional, as demonstrated by more specific plasma membrane labeling than was obtained with individually tagged fluorescent β and γ subunits and by their abilities to modulate adenyl cyclase activity. Comparisons of the localization patterns of βγ complexes formed by pairwise combinations of three different β subunits with three different γ subunits showed clear differences in localization patterns. This study also showed that the β subunit can direct βγ targeting in that complexes containing either β1 or β2 localized to the plasma membrane, whereas those containing β3 accumulated in the cytosol or on intracellular membranes. This method of specifically visualizing βγ dimers will have many applications in sorting out the roles of particular βγ complexes in a wide variety of cells and tissues.

EXPERIMENTAL PROCEDURES

Production of Fluorescent Fusion Proteins—To produce YFP-(1–158)β1 in pcDNAI/Amp, YFP-(1–158) was amplified by PCR from enhanced YFP (Clontech) that introduced a substitution of Met for Gln-69 (26). The PCR introduced a BamHI site at the 5′ end of YFP-(1–158) and a BglII site at the 3′ end. A BamHI site was introduced into the polylinker of pcDNAI/Amp 3′ to the BamHI site, and YFP-(1–158) was subcloned into these sites to produce YFP-(1–158)pcDNAI/Amp. A BglII site in the human β1 cDNA was removed using the QuikChange site-directed mutagenesis kit (Stratagene), and the cDNA was amplified by a PCR that added a linker sequence (Arg-Ser-Ile-Ala-Thr) containing a HA epitope in between the ECFP and YFP sequences (25). This PCR product was digested with BamHI and BglII and subcloned into the BamHI and BglII sites of the modified pcDNAI/Amp as described for β1.

A similar strategy was used to produce YFP-(159–238)γ2. YFP-(159–238) was amplified from enhanced YFP by a PCR that introduced a BamHI site at the 5′ end of YFP-(159–238) and a BglII site at the 3′ end and subcloned into the BamHI and BglII sites of the modified pcDNAI/Amp vector described above to produce YFP-(159–238)pcDNAI/Amp. The human γ2 cDNA (27) was amplified by a PCR that added a BamHI site and a linker sequence (Arg-Ser) to the 5′ end and a BglII site to the 3′ end. This PCR product was digested with BamHI and BglII and subcloned into the BglII site of YFP-(159–238)pcDNAI/Amp so that YFP-(159–238) was fused to the amino terminus of γ2. To produce YFP-(159–238)γ3 and YFP-(159–238)γ3, the bovine γ3 cDNA (27) were each amplified by PCR, digested with BamHI and BglII, and subcloned into the BglII site of YFP-(159–238)pcDNAI/Amp as described for γ2.

YFP-N-β and YFP-C-γ in the Dictostelium expression vector pCV5 were produced as follows. For YFP-N-β, PCR of YFP-(1–158) introduced a BamHI site followed by a Dictostelium ribosomal binding site vector in pCV5. For YFP-C-γ, a BamHI site and the codons for Met-Ser were introduced before YFP-(159–238), and the YFP stop codon was eliminated and substituted with a BglII site. The Dictostelium γ subunit-coding sequence was flanked by a BamHI site on the 5′ end and a BglII site on the 3′ end. These two fragments were sequentially subcloned into pCV5.

To produce GFP-β1, the human β1 cDNA was amplified by PCR and ligated into pWay5, a derivative of pCR3.1 (Invitrogen), in the presence of Srf I, as described (28). This procedure added a linker sequence (Gly-Gly-Gly-Ser-Gly-Gly-Gly-Gly-Ser) in between the amino- and carboxy-terminal β1 sequences.

To produce GFP-γ2 and GFP-γ3, the GFP sequence in pWAY5 was replaced with that of ECFP (Clontech) containing a substitution of His for Asn-164 (29), and the γ2 and γ3 sequences were each amplified by PCR and subcloned into this vector in the presence of Srf I. The resulting constructs contained a linker sequence (Gly-Gly-Gly-Ser-Gly-Gly-Gly-Gly-Ser) that includes the hemagglutinin epitope in between the ECFP and γ sequences, similar to that described in Manahan et al. (30). All constructs were verified by DNA sequencing.

Transient Expression and Assay for cAMP Accumulation—0.8 × 106 COS-7 cells (obtained from Henry Bourne) in 60-mm dishes were transfected with plasmids as described in the legends to Figs. 3 and 4 using 10 μl of LipofectAMINE 2000 reagent (Invitrogen) according to the manufacturer’s instructions. 24 h after transfection, the cells were replated in 24-well plates and labeled with [3H]adenosine. After an additional 24 h, intracellular cAMP levels were determined as described previously (31). cAMP accumulation was measured in the presence of 1 mM 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor.

Imaging of Fluorescent Fusion Proteins—HEK-293 cells (ATCC, CRL-1573) were plated at a density of 105 cells per well on Lab-Tek II 4-well chambered coverslips and transiently transfected with 0.075 μg each of plasmids encoding YFP-N-β and YFP-C-γ constructs and 0.0125 μg each of eECFP-Mem (Clontech), which encodes a fluorescent fusion protein targeted to the plasma membrane by the amino-terminal 20 residues of neuromodulin (32), and mRFP, expressed in pcDNA3 (33) as
a marker for the cytool, using 0.25 µl of LipofectAMINE 2000 Reagent (Invitrogen). For studies of Gβγ, CFP-γ2, and CFP-γ3, cells were transfected with 0.075 µg each of fluorescent and/or untagged G protein subunits, as described in the legend to Fig. 4. The cells were imaged 2 days after transfection at 63X using a Zeiss Axiosvert 200 fluorescence microscope equipped with computer-controlled filter wheels, shutters, xyz stage (Ludl), and an ORCA-ER camera (Hamamatsu) under the control of IPLab software (Scanalytics). A single triple pass dichroic mirror (8600bs, Chroma) was used to ensure image registration. Excitation and emission filters for CFP (430/25, 465/30), YFP (495/20, 535/25), and mRFP1 (565/25, 630/60) were obtained from Chroma (Brattleboro, VT). One hour before imaging the culture medium was replaced with 20 mM HEPES-buffered minimal essential medium with Earle’s salts without bicarbonate. During imaging the cells were maintained at 37°C using a CSU1 stage incubator (Harvard Apparatus). For each YFP-N-βYFP-C-γ and GFP-β-CFP-γ combination, 40–70 cells were imaged from plates transfected on 3 different days.

Measurement of Intensity and Membrane Targeting of YFP-N-βYFP-C-γ Complexes—The membrane marker (ECFP-Mem) was used as the primary criterion for selecting cells for imaging and analysis. Cells having a clear plasma membrane border and adjacent region of cytoplasm were identified. If the cell also had detectable intensity of the cytoplasm marker (mRFP) and YFP-N-βYFP-C-γ, then the cell image was recorded. Exposure times and gain for each image varied depending on cell intensity, and the following corrections were made so that the intensity values correspond to a 1-s exposure, gain of 1, with instrument background subtracted. Instrument background as a function of exposure time and gain was determined from images of dishes containing media without cells. The instrument background was subtracted from each image, and the remaining intensity was scaled to a 1-s exposure, gain of 1. Fluorescence intensity was determined empirically to be related linearly to exposure time and gain. A small amount of bleed-through of CFP intensity into the YFP images (0.6%) was then subtracted. All image processing was performed using IPLab software.

The average fluorescence intensity of each YFP-N-βYFP-C-γ combination was determined by tracing the border of each cell using the ECFP-Mem image and calculating the average pixel intensity of the entire cell including the border for the YFP-N-βYFP-C-γ image. The average intensity of YFP-C-γ, which does not contain the chromophore, expressed alone (7.5, S.E. = 0.16, n = 18) was used to determine the intensity due to autofluorescence. Images with average intensity values below 7.5 were not included in the calculation of average intensity or of plasma membrane fraction, described in the next paragraph.

The plasma membrane fraction of the YFP-N-βYFP-C-γ complexes in each cell was determined as follows (see Fig. 6, C–F). Plasma membrane pixels corresponding to a length of plasma membrane were identified and marked using the ECFP-Mem image. Cytoplasm pixels were marked with a 12 X 12-pixel box adjacent to the plasma membrane pixels in a region that was devoid of intracellular membranes, which were not quantified. The plasma membrane to cytoplasm ratios of YFP-N-βYFP-C-γ (βγR), plasma membrane marker (PMR), and cytoplasm marker (CR) were calculated by dividing the average intensity of each label in the marked plasma membrane region by the average intensity in the marked cytoplasm region. PMR and CR were very consistent, with mean values of 1.24 (S.D. = 0.15, n = 375) and 0.66 (S.D. = 0.099, n = 375), respectively. The plasma membrane fraction of YFP-N-βYFP-C-γ, PMF(βγ), is defined as the plasma membrane to cytoplasm ratio of YFP-N-βYFP-C-γ relative to that of the plasma membrane and cytoplasm markers in the same cell and was calculated using the following equation.

\[
\text{PMF}(\beta\gamma) = \frac{\beta\gamma R - CR}{PMR - CR}.
\]

Equation 1

A value of zero corresponds to a completely cytoplasmatic distribution, and a value of one corresponds to a completely plasma membrane distribution.

RESULTS

Development of a Method to Visualize Functional Fluorescent βγ Dimers—We have applied the strategy of BiFC (25) to visualize βγ dimers. This approach involves the production of a fluorescent signal by two nonfluorescent fragments of YFP when they are brought together by interactions between protein fusions to each fragment. The G protein β and γ subunits appeared to be ideal candidates for this technique because they associate irreversibly as a complex that functions as a single unit and the amino termini of the two subunits are associated into a coiled-coil (34). To produce fluorescent βγ dimers we fused an amino-terminal YFP fragment (residues 1–158, referred to as YFP-N) to the amino terminus of the β subunit to produce YFP-N-β and a carboxyl-terminal YFP fragment (residues 159–238, referred to as YFP-C) to the amino terminus of the γ subunit to produce YFP-C-γ (Fig. 1). As an initial test of this approach, one of us (L. T.) produced YFP-N-β and YFP-C-γ constructs derived from the single β and single γ subunits that are encoded in the genome of the cellular slime mold, Dictyostelium discoideum. Expressing both of these YFP-N-β and YFP-C-γ constructs resulted in a fluorescence signal that was enriched on the plasma membrane (Fig. 2 and Supplemental Video 1), whereas expressing either recombinant protein alone did not produce a detectable fluorescent signal (data not
ent experiments performed in triplicate.

... and HEK-293 cells. C, YFP-N-β1/YFP-C-γ1, which does not form a functional dimer (2, 35, 36), does not produce a specific fluorescent signal. When expressed by themselves, YFP-N-β1 (D) and YFP-C-γ1 (E) are not fluorescent. In addition, co-expression of YFP-N and YFP-C does not produce fluorescence (F). Considerable variation in signal strength required adjusting the brightness of the final images by plotting restricted ranges of the pixel values (normalized to a 1 s exposure) as follows: A, 5–80; B, 5–80; C, 4–12; D, 6–12; E, 6–12; F, 6–12. HEK-293 cells were transfected and imaged as described under "Experimental Procedures." Bar = 10 μm. G, YFP-N-β1/YFP-C-γ1 dimers potentiates activation of adenyl cyclase. The adenyl cyclase activity in COS-7 cells is stimulated by Yγ in the presence of activated αs (37). cAMP accumulation was measured in COS-7 cells transfected with a total of 2.025 μg of plasmid consisting of vector alone (pcDNA1/Amp) or varying amounts of vector plus 0.025 μg of plasmid encoding αs_R201C (36), a constitutively activated αs mutant (38), and 1 μg each of plasmids encoding the indicated β and γ subunits. YN indicates YFP-N, and YC indicates YFP-C. Values represent the means ± S.E. of 3–6 independent experiments performed in triplicate.

shown). This result demonstrates that BiFC can be used to image βγ dimers and led us to investigate whether this approach could distinguish among the numerous potential βγ dimers formed in mammals in terms of their efficiency of formation and their subcellular localization patterns.

To test the ability of the BiFC approach to produce functional fluorescent βγ dimers, we examined the properties of YFP-N-β1/YFP-C-γ1 and YFP-N-β1/YFP-C-γ1 complexes. βγ has been used extensively in studies of interactions between βγ and effectors such as adenyl cyclase (2), phospholipase C (3), and G protein-gated inwardly rectifying K⁺ channels (4). Ribozyme inactivation studies have shown that βγ mediates signaling from the βγ-adrenergic receptor to adenyl cyclase via Gγ in HEK-293 cells (11, 12). YFP-N-β1/YFP-C-γ1 (Fig. 3A) and YFP-N-β1/YFP-C-γ1 (Fig. 3B) exhibited strong signals in the plasma membrane. However, when expressed by themselves, YFP-N-β1 (Fig. 3D) and YFP-C-γ1 (Fig. 3E) were not fluorescent. In addition, co-expression of YFP-N and YFP-C did not produce a specific fluorescent signal (Fig. 3F). Specific fluorescence was not observed upon co-expression of YFP-N-β1 and YFP-C-γ1 (Figs. 3C, 5D, and 6A), confirming previous studies indicating that βγ do not interact to form a functional dimer (2, 35, 36). These results indicate that the BiFC method only produces specific fluorescence when YFP-N and YFP-C are fused to β and γ subunits that interact.
Functionality of BiFC βγ complexes was tested for by determining their abilities to modulate adenylyl cyclase activity. The adenylyl cyclase activity in COS-7 cells is stimulated by βγ in the presence of activated α (37). cAMP accumulation was measured in COS-7 cells that co-expressed αR201C, a constitutively activated α mutant (38), and fluorescent or unlabeled βγ complexes. YFP-N-β1-YFP-C-γ2 potentiated adenylyl cyclase activation with a somewhat lower efficacy than did β1γ2, whereas individually expressed β and γ subunits did not potentiate activation of adenylyl cyclase (Fig. 3G). Comparisons of expression levels in immunoblots of membranes of COS-7 cells transfected with either β1γ2 or YFP-N-β1-YFP-C-γ2 showed that attachment of YFP-C to γ2 had only minor effects on expression, but attachment of YFP-N to β1 resulted in a decreased level of expression (data not shown), which could account for the decreased activity of YFP-N-β1-YFP-C-γ2 compared with that of β1γ2. Similar results were obtained with YFP-N-β1-YFP-C-γ2 (data not shown).

Comparison of BiFC βγ Dimers with Those Obtained Using GFP-β and CFP-γ—Imaging of YFP-N-β1-YFP-C-γ2 complexes ensures that only β and γ subunits that are associated as a dimer are visualized, whereas imaging of co-expressed GFP-β and CFP-γ subunits results in visualization of the total amount of β and γ subunits expressed in a cell. The plasma membrane signal exhibited by cells expressing YFP-N-β1-YFP-C-γ2 complexes (Fig. 4, A and B) represented a greater percentage of the total signal than that in cells that co-expressed GFP-β1 and either CFP-γ2 (Fig. 4, E and F) or CFP-γ1 (Fig. 4, G and H). Moreover, the cytosolic GFP-β1 and GFP-γ signals did not co-localize entirely. The β signal tended to be more diffuse, whereas the γ signal generally was attached to intracellular vesicles and membranes. This is consistent with the fact that the γ subunit, but not the β subunit, is prenylated, resulting in membrane attachment. When GFP-β1 was co-expressed with unlabelled γ1 (Fig. 4C) and when CFP-γ1 was co-expressed with unlabelled β1 (Fig. 4D), the relative amounts of signal in the plasma membrane were greater than when the two labeled constructs were co-expressed (Fig. 4, G and H). These results suggest that GFP-β and GFP-γ subunits do not assemble together into dimers.

Also in contrast to the BiFC approach, fusion of GFP derivatives to both β and γ did not result in βγ dimers that could potentiate activation of adenylyl cyclase. The activities of GFP-β1γ2 and β1-CFP-γ2 (Fig. 4I) were similar to that of YFP-N-β1-YFP-C-γ2 (Fig. 3G), but GFP-β1-CFP-γ2 was not functional (Fig. 4I). However, as determined in immunoblots of membranes of COS-7 cells transfected with either YFP-N-β1-YFP-C-γ2 or GFP-β1-CFP-γ2, GFP-β1 was expressed at the same level as was YFP-N-β1, and CFP-γ2 was expressed at a higher level than was YFP-C-γ2 (data not shown). Corresponding results were obtained with GFP-β1γ1, β1-CFP-γ1, and GFP-β1-CFP-γ2 complexes (data not shown). Most likely, this indicates that, whereas the βγ complex can tolerate fusion of a single GFP molecule to the amino terminus of β or γ, attachment of GFP to the amino termini of both subunits disrupts proper folding.

Imaging of BiFC βγ Dimers Indicates Roles for Both β and γ in Targeting—To investigate whether different β and γ combinations can be distinguished in vivo in terms of their abilities to form dimers, we imaged HEK-293 cells expressing pairwise combinations of YFP-N-β1, YFP-N-β2, and YFP-N-β5, with YFP-C-γ1, YFP-C-γ2, and YFP-C-γ5 (Fig. 5). There were clear differences in the average intensities of different βγ dimers (Fig. 6A). Based on these average intensities, complexes containing β1 and γ1, with the exception of β5γ2, were formed to a greater extent than complexes containing β5. As described above, application of BiFC to β2 and γ1, which do not interact to form a functional dimer (2, 35, 36), did not produce specific fluorescence (Figs. 5D and 6A). However, both YFP-N-β2 (Fig. 5, E and F) and YFP-C-γ1 (Fig. 5, A and G) produced fluorescent complexes upon co-expression with other binding partners.

Different YFP-N-β-YFP-C-γ complexes exhibited distinguishable localization patterns (Figs. 5 and 6B). A distinct plasma membrane signal was obtained with YFP-N-β1-YFP-C-γ1, the βγ complex associated with transducin (Fig. 5A), and with YFP-N-β1-YFP-C-γ2 (Fig. 5B), YFP-N-β1-YFP-C-γ5 (Fig. 5C), YFP-N-β2-YFP-C-γ2 (Fig. 5D), and YFP-N-β2-YFP-C-γ5 (Fig. 5F), which have similar abilities to modulate the activities of adenylyl cyclase and phospholipase C (3). As quantified in Fig. 6, YFP-N-β1-YFP-C-γ2 exhibited the greatest amount of signal in the plasma membrane compared with the cytoplasm followed by YFP-N-β1-YFP-C-γ2 and then YFP-N-β1-YFP-C-γ1 and YFP-N-β2-YFP-C-γ5. In contrast, none of the β5 complexes localized primarily to the plasma membrane. YFP-N-β5-YFP-C-γ1 (Fig. 5G) predominantly exhibited a diffuse cytosolic pattern. YFP-N-β5-YFP-C-γ2 (Fig. 5H) targeted to intracellular

![Image](image-url)
membranes, which appeared to include Golgi membranes, the endoplasmic reticulum, and the nuclear membrane, whereas YFP-N-β2YFP-C-γ (Fig. 5I) exhibited some signal in intracellular membranes, although generally not the nuclear membrane, and also some signal in the plasma membrane. As discussed below, the different localization patterns obtained with specific βγ complexes indicate that both β and γ play roles in determining subcellular localization.

DISCUSSION

We have applied the strategy of BiFC (25) to image complexes of β and γ subunits. This strategy takes advantage of the ability of two nonfluorescent fragments of YFP to form a fluorescent signal when fused to the amino termini of β and γ subunits, which form a coiled-coil in the βγ structure (34). This method of imaging βγ subunits is superior to imaging β and γ subunits that are individually tagged with GFP derivatives for several reasons. First, individually tagged β and γ, when expressed together, are unable to modulate the activity of adenylyl cyclase, although each is functional when co-expressed with an untagged binding partner, indicating that simultaneously placing GFP derivatives at the amino termini of both β and γ is disruptive. This result suggests that FRET experiments using CFP and YFP-tagged β and γ subunits are not optimal ways to measure assembly of functional dimers, although in assays of calcium channel regulation functionality of such dimers has been reported (39, 40). Second, the localization patterns of βγ complexes imaged using BiFC differ from those of individually tagged subunits, generally exhibiting a more pronounced plasma membrane localization. In addition to localizing to the plasma membrane, GFP-β displayed a diffuse cytosolic pattern, whereas CFP-γ2 and CFP-γ localized to intracellular membranes. Because β and γ are only functional when assembled into dimers, these additional locations of individually tagged subunits may either reflect unassembled proteins targeted for degradation or complexes of labeled proteins with endogenous binding partners. In contrast, the BiFC method ensures that only specific functional βγ complexes are visualized. We have demonstrated that this method can be used to determine which β and γ subunits form complexes in vivo and to compare the relative amounts of complex formation and

Fig. 6. Quantitative comparisons of YFP-N-βYFP-C-γ images. A, average fluorescence intensities of the different YFP-N-βYFP-C-γ complexes. Intensity values correspond to a 1-s exposure with instrument background subtracted. The line at Average Intensity = 7.5 represents the value of YFP-C-λ expressed alone. Because this YFP fragment does not contain the chromophore, this represents cellular autofluorescence, and images with values below this were not included in this analysis. βγ, which does not form a functional dimer (2, 35, 36), exhibited a value just above this cut-off (8.62, S.E. = 0.31) in 8/46 images, whereas the other images collected for this combination fell below this cut-off. For comparison, 63/68 of βγ images, 52/64 of βγ images, 31/54 βγ images, 28/56 βγ images, 20/56 βγ images, 5/52 βγ images, and 63/74 βγ images had intensities above this cut-off. Values represent the mean intensities ± S.E. of the images above the autofluorescence cut-off. B, plasma membrane fractions of the YFP-N-βYFP-C-γ complexes. As described under “Experimental Procedures,” cytoplasmic intensity was measured in a region adjacent to the plasma membrane that was devoid of intracellular membranes, which were not quantified. A value of zero corresponds to a completely cytoplasmic distribution, and a value of one corresponds to a completely plasma membrane distribution. The plasma membrane fraction of βγ is not included because the intensity of this combination was generally below the autofluorescence cut-off. Values represent the mean ± S.E. of determinations using the same images with intensities above the autofluorescence cut-off as were used in A. C–F, illustration of plasma membrane fraction measurement using the cell shown in Fig. 4A. C, image of YFP-N-β2YFP-C-γ with a black line marking the membrane pixels and a black square marking the cytoplasm pixels. A white line indicates the location of pixel intensities shown in F. YN indicates YFP-N, and YC indicates YFP-C. D, image of ECFP-Mem (plasma membrane marker). E, image of mRFP (cytoplasm marker); F, plot of fluorescence intensity along white line indicated in C. Top curve, ECFP-Mem; middle curve, YFP-N-β2YFP-C-γ; bottom curve, mRFP. The location of the membrane pixels and cytoplasm pixels are indicated by the gray bars. The fluorescence intensities were scaled for clarity.
subcellular localization patterns of different complexes.

Taken together with previous studies our results indicate that the G protein α, β, and γ subunits all play roles in mutually targeting each other to the plasma membrane. Our studies indicate a role for the β subunit in targeting γ in that complexes containing β₁ and β₂ localized to the plasma membrane, whereas those containing β₂γ accumulated in the cytosol or on intracellular membranes. Previously, βγ was demonstrated to play a role in targeting the α subunit in that specific βγ combinations exhibited differing abilities to restore plasma membrane targeting to α₁ and α₂ mutants with decreased abilities to interact with βγ (20), and a γ subunit targeted to the mitochondria caused α₁ and β to mislocalize (23). Conversely, under certain conditions co-expression of α₁ is required to target β₁γ₂ to the plasma membrane, and an α₂ mutant that is targeted to the mitochondria brings β₁γ₂ with it (24).

The different localization patterns obtained with specific βγ complexes indicate that both β and γ play roles in determining subcellular localization. Based on the complexes we have studied, these roles appear to be distinct. Comparisons of dimers containing different β subunits indicate a role for the β subunit in determining whether the dimer localizes to the plasma membrane or intracellular membranes. In contrast, the γ subunit generally determined the degree of membrane association but did not specify whether the dimer localized to the plasma membrane or intracellular membranes. Dimers containing γ₂ or γ₅ associated with membranes to a greater extent than those containing γ₁, consistent with the fact that γ₁ is farnesylated, whereas the other γ subunits are geranylgeranylated. The 20-carbon isoprenoid geranylgeranyl is more hydrophobic than the 15-carbon farnesyl group and β₁γ₂, but not geranylgeranylated βγ dimers, are soluble in the absence of detergents (22). However, in the context of β₂γ, the γ subunit also played a role in determining to which membranes the dimer localized in that β₁γ₂ and β₂γ₅ exhibited distinguishable membrane localization patterns. Perhaps in the case of β₁γ in comparison with β₁γ and β₂γ dimers, the γ subunit plays a more dominant role in membrane targeting because β₁ exhibits relatively weak interactions with endogenous α subunits, as discussed below.

Localization of β₂γ dimers to intracellular membranes rather than the plasma membrane could either indicate a direct targeting role for β or an indirect role related to association with α subunits. Previous studies suggest that palmitoylation of the α subunit is important for plasma membrane targeting because efficient plasma membrane targeting of β₁γ₂ expressed in HEK-293 cells required either co-expression of α₁ or introduction of a palmitoylation site into γ₂ (24). We observed efficient localization of BiFC β₁γ₂ to the plasma membrane in the absence of co-expressed α subunits, but this could be due to association with endogenous α subunits. Based on fluorescence intensity, the β₁γ dimers were expressed at similar or lower levels compared with other βγ dimers that associated primarily with the plasma membrane. However, since β₁γ₂ interacts with α₂ but not other α subunits in vitro (41), relatively weak interactions with endogenous α subunits might explain the localization pattern observed for β₁γ₂ dimers. One model for targeting of αβγ heterotrimers, based on a study in which CFP-α₂ and YFP-γ₂ co-localized in both the region of the Golgi apparatus and the plasma membrane (42), proposes that α and βγ associate on the Golgi apparatus, whereas the α subunit is palmitoylated, leading to targeting of the heterotrimer to the plasma membrane. Future studies will investigate the potential role of α subunits in regulating localization of β₁γ₂ dimers.

Functionality of β₁γ₂ dimers has been demonstrated in that they can inhibit G protein-gated inwardly rectifying K⁺ channels (43) and activate phospholipase C. Both β₁γ₁ (44) and β₁γ₅ (45) can also stimulate phospholipase C, but only modestly compared with β₅γ₂. However, when purified from native tissues, β₂ is associated with RGS proteins that contain Gγ-like domains, such as RGST, with which it is associated in the brain (46). In PC12 cells, endogenously expressed β₁ and RGST localize in the nucleus (47). Interaction with RGST is required for nuclear localization because β₂ mutants that can dimerize with γ₁ but not RGST, are excluded from the nucleus (48). In addition, co-expression of β₂ and RGST6 promotes co-localization of both proteins in the nucleus (49). Our demonstration that β₁γ complexes localize to intracellular membranes, including the nuclear membrane, but are excluded from the nucleus itself is consistent with these previous studies. Future studies will directly compare the localization of β₂ when complexed with either γ subunits or RGS proteins with Gγ-like domains.

In some cases, differential localization patterns of G protein subunits may be due to differences in their association with membrane microdomains such as caveolae and focal adhesions (50–52). Cell-specific expression of these membrane domains may be responsible for differences in G protein subunit association observed in different cell types (53). In turn, differences in heterotrimer composition may account for cell-specific effects of receptors as well as the diverse cellular effects of receptors that apparently couple to the same G proteins. Application of the BiFC method to visualize specific βγ dimers in a wide variety of cells and tissues with distinctive morphologies will help to elucidate the ways in which subcellular localization can regulate signaling pathways.

Acknowledgments—We thank Janet Robishaw for plasmids expressing β and γ subunits, Thomas Hughes for the pWay5 vector, and Roger Tsien for the mRFP plasmid. We also thank Jennifer Malcolm for producing the YFP(1–158)βγ expression plasmid. In addition, we thank Drs. Robishaw and Hughes for helpful discussions and critical reading of the manuscript.

REFERENCES
Visualization of Gβγ Using Fluorescence Complementation