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Biased excitable networks: how cells direct motion
in response to gradients
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The actin cytoskeleton in motile cells has many of the hallmarks

of an excitable medium, including the presence of propagating

waves. This excitable behavior can account for the

spontaneous migration of cells. A number of reports have

suggested that the chemoattractant-mediated signaling can

bias excitability, thus providing a means by which cell motility

can be directed. In this review, we discuss some of these

observations and theories proposed to explain them. We also

suggest a mechanism for cell polarity that can be incorporated

into the existing framework.
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Introduction
How cells sense and move along chemical gradients,

referred to as directed migration or chemotaxis, is one of

the fundamental questions in cell biology. This fascinating

process plays a crucial role in normal physiological as well as

pathological events, from the proper functioning of the

immune system to cancer metastasis [1]. Research into

chemotaxis is also an area where collaboration between

experimental and computational biologists has been fruit-

ful, leading to an increasing number of models that explain

many aspects of the response [2,3��]. A consensus has

emerged that in order to understand chemotaxis, we must

be able to answer several separable but interrelated ques-

tions [4]. What drives spontaneous cell motility? How do

cells read external chemoattractant gradients? How do the

external cues direct the otherwise random motility? How

do cells become polarized?

Though chemotaxis is observed in a large number of cells,

the mechanisms used to direct eukaryotic cells are best
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understood in neutrophils and in the social amoebae,

Dictyostelium discoideum [5]. Dictyostelium cells rely on

chemotaxis to find nutrients. When starved, they also

acquire the ability to chemotax in response to cAMP

gradients in a developmental process that enables them

to aggregate and survive. The amoeboid motility of

neutrophils and Dictyostelium cells involves the localized

dynamic extension and retraction of pseudopodia. In

unstimulated cells, this rhythmic pattern repeats itself

without an obvious spatial bias leading to random cell

migration. By contrast, the imposition of a chemoattrac-

tant gradient provides a guidance cue that biases this

stochastic activity and thereby steers cells in the direction

of highest chemoattractant concentration.

Recent years have seen a growing number of reports

showing that the actin cytoskeleton and the signal trans-

duction events which regulate it behave as an excitable

media (Figure 1a, Video S1). More recently, models have

been proposed that describe how this random activity can

be steered by the chemoattractant gradient. Here we

review these findings, and also suggest a means by which

polarity can be incorporated into these models.

Excitable behavior in cells
Probably one of the best examples of how biology can

motivate a whole new branch of applied mathematics is

the study of excitable systems. In biology, the classical

model of an excitable system is that proposed by Hodgkin

and Huxley to explain the ‘all-or-nothing’ characteristic

of action potentials in neurons [6]. Perturbations of excit-

able systems can be either subthreshold, simply dying

out, or superthreshold, eliciting a full response. When the

excitable elements are spatially distributed, as they are

along an axon, the system is said to be an excitable

medium. In this case, a triggered response gives rise to

a propagated wave of activity that travels along the

medium and, thus, propagated waves are a signature of

excitability. FitzHugh and Nagumo created a simplified

mathematical model that recreated the dynamics of the

Hodgkin-Huxley model [7,8]. The FitzHugh–Nagumo

model belongs to a common class of systems known as

activator–inhibitor systems (Figure 1b, Table 1). In these

systems one component acts as an activator, as it includes

an autocatalytic loop and also turns on the second

element, the inhibitor, which provides negative feedback

to the activator. Because they only include two com-

ponents, activator–inhibitor systems can be described

by an analytically tractable set of equations facilitating

their analysis.
how cells direct motion in response to gradients, Curr Opin Cell Biol (2011), doi:10.1016/
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Figure 1
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Wave propagation in excitable media. (a) This cartoon illustrates one possible way in which excitable systems involving an activator (green) and an inhibitor

(red) can give rise to propagating waves. Functional (shaded) molecules of the activator recruit and activate like molecules in an autocatalytic, positive

feedback loop as well as inhibitory molecules (red) that act in a negative feedback loop to turn off signaling. Though the activator can diffuse throughout,

the presence of the inhibitor in one direction leads to wave propagation in the other direction. (b) Schematic of an activator (X)–inhibitor (Y) system. The

autocatalytic loop endows the system with a threshold of activation. External signals, which may include stochastic perturbations, can trigger the excitable

network (EN) when they are sufficiently large to overcome the threshold. (c) Phase-plane analysis of the EN. This plot shows the two nullclines (dotted gray

lines) – curves for which the levels of X or Y are constant over time. The intersection between the two denotes the equilibrium (circled). Absent a

perturbation, the system remains at this point (labeled a). However, a disturbance can move the state to another point in the plane (e.g. b). The blue arrows

show the direction and velocity of the trajectory. In the case shown by the black solid line, a superthreshold increase in the level of X causes a subsequent

large change (due to the positive feedback loop) which moves the state to point c. At this point the negative feedback loop starts to dominate and begins to

lower the level of X. Between points c and d, the amount of inhibition (level of Y) continues to increase, accelerating the drop in X which is rapid between

points d and e. Thereafter, Y decreases (between e and a) as the system relaxes to its equilibrium. (d) Plots of X and Y as a function of time, labeled to

correspond to the phase plane points. Perturbations below the threshold do not trigger large deviations.
The presence of wave-like behavior, and hence excit-

ability, in the actin cytoskeleton of Dictyostelium was first

reported by Vicker et al. [9] who imaged fixed cells stained

by phalloidin-rhodamine. Subsequent observations in live

cells have confirmed the existence of these cytoskeletal

waves [10–13]. Actin-binding proteins (e.g. Arp2/3, LimE,
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coronin) or Scar/WAVE complex components (e.g. Hem-1

in neutrophils and Hspc300 in Dictyostelium) are recruited

from the cytosol to foci on the basal surface and give rise to

waves of recruitment that propagate outwards [14,15].

Myosin-IB is found enriched at the front edge of the wave,

coronin at the rear and Arp2/3 throughout [16��]. When
how cells direct motion in response to gradients, Curr Opin Cell Biol (2011), doi:10.1016/
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Table 1

Summary of model types

Model type Type Properties explained References

Excitable network (EN) Stochastic, reaction-diffusion Random migration, wave propagation,

bursting phenomena

[21–24]

Activator–inhibitor Reaction system, can also incorporate

diffusion and stochastic perturbations

Can be used to represent

excitable networks

FitzHugh–Nagumo Stochastic, reaction-diffusion N/A. An early example of an EN based

on an activator–inhibitor system that is

analytically tractable

[7,8]

Biased excitable

network (BEN)

Stochastic, reaction-diffusion Random and chemotactic migration.

Actin wave propagation. Does not explain

adaptation or relative sensitivity

to varying gradients

[25,28��,36,37]

Local-excitation,

global-inhibition (LEGI)

Deterministic, reaction-diffusion Adaptation, static gradient sensing and

relative sensitivity to gradients

[30,31]

LEGI–BEN Modular, stochastic, reaction-diffusion A type of BEN that combines properties

of LEGI and BEN models. Does not explain

polarization or persistence

[18��]
waves reach the cell membrane they probably supply the

force, through actin polymerization, needed to push it

forward [10,15–17]. As such, wave propagation and extinc-

tion is related to extensions and retractions of pseudopods.

When any of these waves collide, they annihilate each

other, which is consistent with the behavior of activator–
inhibitor systems. In Dictyostelium, recruitments of Ras

binding domains (a measure of activation of multiple

Ras proteins) and PH-domains (a measure of PIP3 accumu-

lation) are propagated in phase with waves of cytoskeletal

activity that reach the cell cortex ([18��]; Video S1). Sig-

naling events upstream of the cytoskeleton also display

excitable behavior.

These excitable behaviors are seen in cells that are not

stimulated by chemoattractant as well as in Dictyostelium
cells lacking the Gb-subunit, indicating that the chemoat-

tractant receptor and associated G-proteins are upstream

of and not part of the excitable network [16��]. However,

chemoattractant signaling can dramatically perturb the

system. Application of a spatially uniform stimulus trig-

gers rapid, global recruitment to the membrane of most of

the proteins showing excitable behavior. Within 30 s, this

response disappears and then is followed by a series of

further recruitments at random sites, appearing as flashes

of fluorescence, which occur over the next several min-

utes before the prestimulus spontaneous behavior

resumes (Figure 2). These secondary flashes of activity

match the second phase of biochemically monitored

events and the ‘patches’ of PIP3 accumulation seen using

fluorescent microscopy [19]. Though waves originate at

random on the basal surface, most of the excitable beha-

vior in polarized cells [15] or cells tracking toward a

chemoattractant-filled micropipette [18��] is found pre-

ferentially near the leading edge.

The overall existence of excitable behavior is quite robust

though this may represent the presence of multiple
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excitable systems. Eliminating the SCAR/WAVE com-

plex or myosin-II does not impair wave formation or

extinguish them [16��]. Wave patterns can even be

observed in certain cells in which the actin cytoskeleton

is disrupted through the addition of polymerization

inhibitors, though only in special situations. Synchronous,

phase shifted rotation of PIP3 and actin has been observed

in cells lacking amiB (a gene required for aggregation

whose absence leads to aberrant cell morphology) that

had been treated with a low dose of Latrunculin A [20].

Reciprocal waves of PIP3 and PTEN are also seen in

Latrunculin-treated Dictyostelium cells that are treated

with caffeine [21]. In both these cases, the period of

oscillation of the waves (�3–5 min) is slower than that

of cells with intact cytoskeleton, suggesting that these

oscillatory behaviors probably differ from the excitable

behavior that leads to actin waves.

Models of excitable behavior
Activator–inhibitor models of excitable behavior are now

being used to explain the waves seen in chemotactic cells

(Table 1). To explain the observed Hem-1 waves in

neutrophils, Weiner et al. proposed Hem-1 as the activator,

actin as the inhibitor and an autocatalytic step which

represents the activation (recruitment to the membrane)

of Hem-1. Simulations recreate several observed beha-

viors, including the formation of propagating waves, the

annihilation of colliding wave fronts and the way that

depolymerization of the actin cytoskeleton freezes waves.

Whitelam et al. used the FitzHugh–Nagumo equations to

explain the presence of stationary spots and their transition

to moving waves as observed in Dictyostelium cells [22]. The

activator is substrate-bound actin, the autocatalytic step

involves the recruitment by Arp2/3 to the growing ends of

fibers and the inhibitory processes include actin severing

and capping proteins. The model assumes that fiber orien-

tation affects the direction of actin growth. Carlsson used a

detailed 3D dendritic network model that does not require
how cells direct motion in response to gradients, Curr Opin Cell Biol (2011), doi:10.1016/
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Figure 2
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The behavior of a LEGI–BEN when stimulated uniformly. (a) In the LEGI system, receptor-mediated signaling turns on excitation and inhibition

processes which act in a complementary manner on the response regulator (RR). (b) When receptor signaling is spatially uniform, the fast excitation

signal leads to a rapid increase in RR before the slower inhibitory signal turns it off, leading to adaptation. In the LEGI–BEN system, RR acts on the

excitable network (EN) by lowering the threshold. (c, d) Response of the EN shown as a kymograph around the perimeter of a cell (c) and showing the

total level of activity, integrated over the cell membrane (d). The spatially uniform increase in response regulator causes a large increase in the

probability of firing in the EN and this is seen as a first peak of activity. Following a refractory time, during which the RR is decreasing, the probability of

firing is higher than before the stimulus. Around the cell, this elicits localized patches of increased activity wherever the local stochastic perturbations

are higher than the threshold (arrows in c). Other points along the perimeter remain below the threshold. When integrated over the cell perimeter, the

total level of activity increases, leading to a second peak, but this is lower than the first as it represents firings over a smaller fraction of the cell

perimeter. (e) Observed effect in markers of activity (green) around the cell perimeter (e.g. PIP3) and cell shape at different times.
polarization of filament orientations to connect the

observed membrane-bound waves with the dynamics of

actin polymerization [23]. The autocatalytic step comes

from branching from existing filaments. In a related model,

Hecht et al. showed that patterns of high activity of finite

duration in both space and time arose because of random

stimulation of a FitzHugh–Nagumo model [24�], and

suggested that these patches of high activity could corre-

spond to the observed patterns of membrane localization of

signaling molecules such as PIP3 [19].
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Guidance of the excitable behavior
These models show that excitable systems driven by

random fluctuations can give rise to patterns observed

in spontaneously migrating cells, but do not address how

external chemoattractants can influence this behavior to

guide cells. Recently, we suggested a model that shows

how to steer this excitable behavior [18��]. The key step is

to recall that excitable behavior is triggered by stochastic

perturbations that are sufficiently large to move the state

of the system across the threshold. Hence, there will be
how cells direct motion in response to gradients, Curr Opin Cell Biol (2011), doi:10.1016/
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Figure 3
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The behavior of a LEGI–BEN when in a chemoattractant gradient. (a) Cells in a gradient have increased receptor occupancy at the front of the cell

relative to the rear. (b) In the LEGI mechanism, the excitation signal rises to a level proportional to the local receptor signal. By contrast, the inhibition

signal is global, and so integrates the receptor signal around the cell and plateaus to an intermediate point. Hence, at the front of the cell excitation

exceeds inhibition and so the response regulator is above basal levels. (b, c) The RR lifts the nullcline which has the effect of lowering the threshold in

the EN thus increasing the frequency of firing at the front of the cell. The periodicity in the response comes from the refractory time needed for the

system to readjust after each firing. (d, e) At the rear, inhibition exceeds excitation and so the RR is below basal level. This lowers the nullcline, thus

raising the threshold which extinguishes the firing of the EN. (f) This kymograph shows how the patches of activity are localized to the front of the cell,

thus steering the motility of the cell toward the regions of high chemoattractant concentration.
more excitable behavior in regions where the threshold is

lower. If a chemoattractant lowered the threshold then

more excitable behavior would be seen in regions where

the cell experiences higher chemoattractant (Figure 3).

Such a system can be referred to as a biased excitable

network (BEN).

Because the occurrence of the spontaneous activity is tied

to the presence and size of a threshold, shallow chemoat-

tractant gradients can give rise to steep differences in the

distribution of responses [18��,25]. Chemotactic cells dis-

play extraordinary sensitivity, detecting gradients as small
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as 1%, and amplified biochemical responses have been

observed using biosensors [26,27]. Capturing these fea-

tures has long been a goal of models of chemotaxis [2,3��].
Simulations in which the activity of a BEN trigger pseu-

dopod protrusions give rise to realistic cell morphologies

[28��] (Shi et al., in preparation).

Local-excitation, global-inhibition (LEGI)
models
As powerful as a BEN is in explaining both the spon-

taneous activity of cells and the means for directing this

activity in response to gradients in receptor occupancy, it
how cells direct motion in response to gradients, Curr Opin Cell Biol (2011), doi:10.1016/
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fails to explain important properties of the chemoattrac-

tant-induced response. First, if increased receptor occu-

pancy lowers the threshold for excitable behavior,

application of a spatially uniform dose of chemoattractant

would give rise to a persistent increase in the frequency of

the responses. By contrast, responses to uniform incre-

ments in chemoattractant are transient and so a means for

eventually reducing the frequency is required. Second, if

an external gradient is applied, receptor occupancy

increases both at the front and the back. Without a means

of subtracting the mean level of chemoattractant, a cell

relying on a BEN that was merely proportional to the

external gradient would increase the excitable behavior

everywhere. Gradients with higher midpoints exacerbate

this problem.

The original motivation of local-excitation, global-inhi-

bition (LEGI) mechanisms was to account for these

important features of the response to chemoattractants

[29,30]. In LEGI models, temporal and spatial sensing

involves a balance between two opposing processes

(Figures 2 and 3). Receptor occupancy controls the

steady-state levels of a rapid, local excitation and a slower,

global inhibition which together control a response reg-

ulator. Upon chemoattractant addition, receptor occu-

pancy increases, eliciting a fast rise in excitation. This

induces a response that peaks as excitation plateaus and

decreases as the slower rise in inhibition catches up. With

a uniform stimulus, the relative change in activity of

excitation and inhibition is the same and the level of

the response regulator returns to the pre-stimulus level

(Figure 2). By allowing the inhibitory molecule to inte-

grate signaling from throughout the cell, and to act

globally, while at the same time requiring that excitation

be fixed at the membrane, this simple model also

accounts for gradient sensing in immobilized cells (Figure

3). However, it fails to capture important aspects of

chemotaxis. First, the original implementation of LEGI

did not significantly amplify the gradient, although sev-

eral modifications have remedied this ([31], our unpub-

lished results). Second, it did not capture the dynamic

behavior of chemotaxing cells.

We recently suggested a hybrid LEGI–BEN model in

which a LEGI mechanism is used to control the size of

the threshold level in an excitable network (Figure 2).

When a spatially uniform chemoattractant stimulus is

applied, the adaptive behavior of the LEGI mechanism

transiently lowers the threshold in the excitable network

for an extended period before slowly returning to its

prestimulus level. During this time, the probability of

triggering excitable behavior is higher than before the

stimulus and this is seen in the initial response and in the

increased presence of localized secondary flashes (Figure

2c,d). Once the LEGI system has adapted, the threshold

and, consequently, the frequency of excitable behavior

are restored to their prestimulus levels. In a gradient, the
Please cite this article in press as: Iglesias PA, Devreotes PN. Biased excitableQ1 networks: 
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persistent elevation of the response regulator lowers the

threshold at the front of the cell increasing the local

frequency of activity in the direction of highest chemoat-

tractant concentration (Figure 3). Equally important is

the fact that, at the rear, the response regulator is lower

than the basal level which raises the threshold thereby

inhibiting the appearance of excitable behavior.

Persistence and polarization
The LEGI–BEN model accounts for many of the

observed properties of chemotactic cells, including the

presence of excitable behavior in unstimulated cells, the

biphasic response to spatially uniform stimuli, and the

focusing of activity in response to gradients. However,

simulating cell movement in a gradient shows that two

aspects are still missing (Shi et al., in preparation). The

first is persistence: Well-differentiated Dictyostelium cells

migrating in the absence of stimulus move in a persistent

random walk [32,33], and this is a consequence of having

pseudopodia extend in the same direction [34]. The

second is polarization: Cells rearrange intracellular com-

ponents to form leading and trailing edges with distinct

sensitivities to chemoattractants. Whereas unpolarized

cells respond immediately to changes in the direction

of a gradient by making a new front, strongly polarized

cells turn toward the new gradient while maintaining the

same leading edge [2,3��,35].

In the context of the LEGI–BEN mechanism, it is easy to

envision how persistence and polarity are both con-

sequences of a spatially perturbed threshold. First,

because we wish to explain persistence in the absence

of receptor occupancy, we assume that the localized firing

of the excitable network slowly increases the likelihood of

subsequent activity. Thus, we postulate a localized
positive feedback loop triggered by the excitable beha-

vior (Y ! Z ! X in Figure 4). This contribution should

be parallel to, or in addition to, that of the LEGI mech-

anism. The addition of this loop also explains the spon-

taneous polarization seen in some cells, as well as the

maintenance of cell polarity after gradient removal. How-

ever, having only a positive feedback loop would even-

tually lead the whole cell toward an activated state. To

circumvent this problem, an inhibitory signal is needed

that can help to localize these signals. Thus, the proposed

mechanism also entails a secondary global inhibitory

signal acting as a feedback loop from the excitable system

(Y ! W ! X in Figure 4).

The suggestion that a second mechanism is required to

explain polarization is reminiscent of an early model of

Meinhardt in which a local activator that encompasses an

autocatalytic loop is coupled to two antagonistic processes

[36]. Recently, Neilson et al. incorporated Meinhardt’s

model into a physical model in which activator level

drives membrane protrusions and cell area is conserved,

and simulated chemotaxis [37]. These simulations show
how cells direct motion in response to gradients, Curr Opin Cell Biol (2011), doi:10.1016/

www.sciencedirect.com
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Modular view of chemotaxis consisting of a LEGI–BEN and incorporating

a putative polarization component. The system consists of three

interconnected components. The LEGI mechanism connects the system

to receptor occupancy. It adapts to spatially uniform stimuli and senses

chemoattractant gradients. The excitable network provides amplification

and regulates motility. In the absence of receptor signals, it results in

random motility, but can be steered by the external gradient through a

LEGI-mediated bias. The polarization (POL) component further biases its

activity based on the history of the EN firing. When these firings

represent random motility, this component provides persistence. When

the firings are the result of a gradient, this component leads to

polarization.
migrating cells whose tracks display persistence when

unstimulated, and turns in response to changes in exter-

nal gradient. However, when stimulated by a uniform

stimulus, the response of these systems does not subside

and hence still requires a LEGI-type mechanism for

explaining adaptation. Moreover, by omitting the slow

positive feedback loop (Y ! Z ! X in Figure 4) these

models cannot explain the slow build up of polarity

observed in cells.

Molecular mechanisms
To date, our understanding of the molecular mechan-

isms giving rise to excitability is rather limited. Thus,

models proposed either eschew the assignment of mol-

ecular identities to the components of the excitable

network [18��,24�], provide exceedingly simple models

of the network [15], or focus on a small portion of the

network [22,23,25]. In fact, models cannot even agree

on whether actin forms part of the activator [22,23] or

inhibitor [15]!

Because of the complexity of the signaling mechanisms,

involving a number of parallel pathways in which many
Please cite this article in press as: Iglesias PA, Devreotes PN. Biased excitableQ1 networks: 
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components display excitability, it is difficult to assign

components to the simple networks. A key component in

all models is the autocatalytic loop and there is wide

consensus that this involves actin polymerization in one

form or another. There is evidence such a positive feed-

back path exists which involves Ras, PI3K, and actin [38].

The strength of this loop could be amplified by the

presence of further feedbacks involving just the actin

cytoskeleton components. Another interesting possibility

entails the coupling of curved membrane proteins, like

BAR-domain proteins, with actin polymerization [39�].

A possibly more fruitful approach at this time is to focus

on the loops of the excitable networks, to perturb these

computationally and to compare the predicted behavior

with the observed phenotypes of genetically and

pharmacologically altered cells. For example, disrupting

the negative feedback loop in the BEN enhances the

excitable behavior and interferes with the response to a

gradient [18��]. This mimics the observed behavior of

cells lacking the PIP3 phosphatase, PTEN, which dis-

play many lateral pseudopods [40,41]. Similar behavior

is seen in cells lacking NF1, a GTPase activating

protein for RasG, as well as cells expressing the con-

stitutively active RasCQ62L [42–45]. Thus, the nega-

tive feedback loop may act to curtail the activation of

the Ras proteins. The mechanical properties of the cell

may also contribute to the inhibitory loop. When simu-

lating cell shape changes elicited by the LEGI–BEN,

we have noted that addition of a uniform stimulus gives

rise to a large spatially homogeneous increase in activity.

Rather than causing the cell to spread out everywhere as

force is applied throughout the cell perimeter, we

instead see a damping of protrusions because of the

mechanical model implemented ([46], Shi et al., in

preparation). Thus, global mechanical constraints can

serve as an inhibitory process.

Conclusion
The last couple of years have begun to shed light on a

connection between observed excitability of cyto-

skeletal events and directed cell migration and this is

providing fresh new insights into our understanding

of chemotaxis. We wish to highlight here how a hier-

archical approach into this complex system has aided

this progress. A key early step was the conceptual

decoupling of the different processes that make up

chemotaxis: gradient sensing, random motility and

polarization. Rapid excitability can be associated with

motility. Gradient sensing and polarity can be treated as

systems that temporally and spatially alter the threshold

of the rapidly excitable system in different ways for

specific purposes. We have now reached the point where

these models can be integrated to understand the che-

motactic behavior. Clearly, many questions remain,

including the identification of molecular components
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and feedback loops. Nevertheless, these are truly excit-

ing times in chemotaxis research.
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