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The signaling lipid phosphatidylinositol (3,4,5)-trisphosphate (PIP3)
is a key regulator of cell proliferation, survival, and migration and
the enzyme that dephosphorylates it, phosphatase and tensin ho-
molog (PTEN), is an important tumor suppressor. As excess PIP3
signaling is a hallmark of many cancers, its suppression through
activation of PTEN is a potential cancer intervention. Using a
heterologous expression system in which human PTEN-GFP is
expressed in Dictyostelium cells, we identified mutations in the
membrane-binding regulatory interface that increase the recruit-
ment of PTEN to the plasma membrane due to enhanced associa-
tion with PI(4,5)P2. We engineered these into an enhanced PTEN
(ePTEN) with approximately eightfold increased ability to suppress
PIP3 signaling. Upon expression in human cells, ePTEN decreases
PIP3 levels in the plasma membrane; phosphorylation of AKT, a
major downstream event in PIP3 signaling; and cell proliferation
and migration. Thus, the activation of PTEN can readjust PIP3 sig-
naling and may serve as a feasible target for anticancer therapies.
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Phosphatidylinositol (3,4,5)-trisphosphate (PIP3) is a potent
second messenger that drives many biological processes, such

as cell growth, survival, and migration (1, 2). In many cancers,
PIP3 levels are elevated due to mutations that either elevate the
activity of phosphoinositide 3-kinases (PI3Ks) or decrease that of
tumor suppressor phosphatase and tensin homolog (PTEN) (3–
5). Although inhibition of PI3Ks has been extensively tried as a
cancer drug target, activation of PTEN has been rarely studied
(6). As PTEN is mainly located in the cytosol and its PIP3
phosphatase activity is suppressed at this location (7, 8), recruit-
ing more PTEN to the plasma membrane and thereby stimu-
lating its lipid phosphatase activity would seem to be an effective
method to repress abnormal PIP3 levels in cancer cells.
PTEN comprises an N-terminal “PIP2-binding” motif, globu-

lar catalytic and C2 domains, and a C-terminal tail (8–10).
Positively charged residues in the PIP2-binding and C2 domains
have been proposed to recruit PTEN to the plasma membrane
through associations with negatively charged head groups of
membrane lipids (11–13). The C-terminal tail is thought to fold
back and bind to the membrane-binding regions, maintaining the
majority of PTEN in the cytoplasm (11, 14, 15). This intra-
molecular inhibition is controlled by phosphorylation of four
serine/threonine residues in the tail domain. A PTEN mutant
that carries an alanine substitution in the phosphorylation sites
of the C-terminal tail (termed PTENA4) increases the membrane
association of PTEN. However, most PTENA4 is still present in the
cytoplasm, suggesting that the A4 mutations may not completely
liberate the membrane-binding sites from inhibition by the tail.
To decipher the mechanisms underlying the membrane asso-

ciation of PTEN, we developed a visual screen for the localiza-
tion of human PTEN expressed in Dictyostelium cells. PTEN
is evolutionarily conserved, and human PTEN can functionally
replace Dictyostelium PTEN (16–19). Using this heterologous
expression system, we identified a membrane-binding regulatory
interface in PTEN, consisting of regions of the catalytic domain

and the CBR3 and Cα2 loops of the C2 domain (20). In the
current study, we introduce multiple mutations in the membrane-
binding regulatory interface that completely release the in-
hibitory effects of the tail, generating a synthetic enzyme, re-
ferred to as enhanced PTEN (ePTEN), with greatly increased
membrane localization and PIP3 phosphatase activity. Our
findings demonstrate that activation of PTEN is a feasible
therapeutic strategy for cancers with increased PIP3 signaling.

Results
By expanding our visual screen for the membrane recruitment of
human PTEN, we isolated another mutant, PTENQ17R, R41G, E73D,
which showed more than a twofold increase in its association with
the plasma membrane in Dictyostelium cells (Fig. 1 A and B). Q17
is located near the PIP2-binding domain, whereas R41 and E73
are located in the phosphatase domain and exposed on the
surface of PTEN (Fig. 1C). All three substitutions are necessary
for the robust membrane localization, although PTENR41G, E73D
modestly promotes membrane association with additional nu-
clear accumulation. To determine whether the membrane lo-
calization of PTENQ17R, R41G, E73D is due to release of the core
region (amino acid residues 1–352) from the inhibitory C-terminal
tail domain (residues 352–403), we performed an “in trans” inter-
action assay. We assessed the binding of PTEN-GFP to a separate
tail domain fused to FLAG after immunoprecipitation with anti-
GFP antibodies (Fig. 1D). As previously reported, whereas PTEN-
GFP did not interact with PTEN352–403-FLAG, PTENA4-GFP
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showed a strong interaction (Fig. 1 D and E). In contrast,
PTENQ17R, R41G, E73D, A4 did not bind to PTEN352–403-FLAG

(Fig. 1E). Further analyses showed that substitution of R41G and
E73D was sufficient to block the core–tail interaction (Fig. 1E).
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Fig. 1. PTENQ17R, R41G and E73D-GFP is localized at the plasma membrane. (A) Dictyostelium cells expressing GFP fused to PTEN, PTENQ17R,R41G,E73D, PTENQ17R,
PTENR41G, PTENE73D, PTENQ17R,R41G, PTENQ17RE73D, and PTENR41G,E73D were viewed by fluorescence microscopy. Nuclei (N) are indicated. (Scale bar, 10 μm.) (B)
Intensity of GFP at the plasma membrane was quantified relative to that in the cytosol. Values represent the mean ± SD (n ≥ 15). (C) The domain structure of
PTEN and the position of mutated residues Q17, R41, and E37 are shown. The 3D structure of PTEN suggests that R41 and E37 are at the surface of PTEN (34)
(www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?uid=11638). (D) Interaction of the C-terminal tail domain of PTEN with full-length PTEN was assessed
by pull-down assay. PTEN maintains associations between the core and tail regions in the same molecule (close conformation) through phosphorylation of the
tail (red asterisks). In contrast, the core region of PTENA4 dissociates from the tail (open conformation) and interacts with an exogenously added tail domain.Whole-
cell lysates expressing PTEN-GFP, PTENA4-GFP, PTENQ17R,R41G,E73D,A4-GFP, PTENQ17R,A4-GFP, or PTENR41G,E73D,A4-GFP were incubated with PTEN352–403-YFP-FLAG.
PTEN352–403-YFP-FLAG was immunoprecipitated with beads coupled to anti-FLAG antibodies. Bound fractions (immunoprecipitates, IP) were analyzed with
antibodies to GFP and FLAG. (E) Band intensity was quantified (n = 3).
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Q17 is located adjacent to a cluster of positively charged
amino acids in the PIP2-binding domain (amino acid residues 6–
15). It has been proposed that these cationic residues interact
with anionic phospholipids, such as PIP2, and are masked by the
inhibitory tail domain (10, 12, 16, 21). In addition, amino acid
residues 13–15 are thought to function as a nuclear localization
signal (13, 22, 23). As Q17R itself did not stimulate membrane
recruitment, we combined Q17R with A4 and found increases in
the membrane localization of PTENA4, Q17R (Fig. 2 A and B),
suggesting that the effect of Q17R is seen only when the
C-terminal tail is released. To test whether Q17R enhances the lo-
calization of PTEN at the plasma membrane by increasing positive
charges in the PIP2-binding domain, we replaced Q17 with a neg-
atively charged residue, glutamate (Q17E). PTENQ17E, R41G, E73D
showed no accumulation at the plasma membrane but was highly
localized in the nucleus (Fig. 2C). Q17E alone only modestly
stimulated the nuclear localization of PTEN (Fig. 2B). A
PTENA4, Q17E displayed a stronger nuclear localization, sug-
gesting that the charge of residue 17 strongly influences the local-
ization of PTEN between the plasma membrane and nucleus, when
the tail is dissociated from the core region of PTEN. In contrast,
substitution of Q17 with either R or E did not inhibit the PIP3
phosphatase activity of PTEN (Fig. 2D). Furthermore, PTENQ17R,

R41G, E73D and PTENQ17R, but neither PTENQ17E, R41G, E73D
nor PTENQ17E, rescued developmental defects in pten− Dic-
tyostelium cells, showing the functional importance of the

ability of PTEN to associate with the plasma membrane
(Fig. 2E).
To examine the role of positively charged residues in the PIP2-

binding domain for localization at the plasma membrane and
nucleus, we individually substituted R11, K13, R14, and R15
with alanine in PTENA4. The effects of each mutation were
distinct (Fig. 3 A and B): R11A showed no effect on the locali-
zation of PTENA4-GFP, K13A blocked nuclear localization but
increased membrane association, R14A inhibited both nuclear
and membrane localization, and R15A blocked only plasma
membrane localization. These results suggest that K13 and R14
are part of the nuclear localization signal, whereas R14 and R15
target PTEN to the plasma membrane (Fig. 3D). Finally, K13A,
R14A, and R15A abolished the ability of PTENA4 to rescue
developmental defects in pten− Dictyostelium cells (Fig. 3E), likely
due to decreases in PIP3 phosphatase activity (Fig. 3C).
Next, we sought to engineer PTEN to increase its ability

to associate with the plasma membrane. Because Q17R pro-
motes the membrane localization of PTEN mutants, such as
PTENR41G, E73D, which partially blocks the interaction with
the C-terminal tail, we tested whether further release of the in-
hibition is possible with additional mutations. We have pre-
viously isolated a PTEN mutant, PTENN262Y, N329H, which also
increases the membrane association of PTEN (20). These resi-
dues are located in the CBR3 loop and Cα2 loop of the C2
domain, respectively. Substitutions N262Y and N329H weaken
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Fig. 2. Q17R promotes PTEN membrane association in
PTENA4 and PTENR41,E73D. (A–C) Dictyostelium cells express-
ing the indicated forms of PTEN-GFP were observed by
fluorescence microscopy. (Scale bar, 10 μm.) Intensity of
GFP at the plasma membrane was quantified relative to
that in the cytosol. Values represent the mean ± SD
(n ≥ 15). (D) PTEN-GFP, PTENC124S-GFP, PTENQ17R-GFP, and
PTENQ17E-GFP were immunopurified from Dictyostelium
cells, and phosphatase activities were measured (n ≥ 3). (E)
PTEN-null Dictyostelium cells expressing different PTEN-
GFP constructs were starved for 36 h to induce differenti-
ation into fruiting bodies (white arrows).
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the association of the core region with the tail in the in trans in-
teraction assay but do not inhibit the PIP3 phosphatase activity (20).
The structure of PTEN suggests that all four mutations (R41G,
E73D, N262Y, and N329H) are located on the surface on the same
side of the molecule (Fig. 4 A and B). Indeed, whereas PTENA4,
PTENQ17R, R41G, E73D, and PTENN262Y, N329H showed twofold
increases in membrane association compared with PTEN,
PTENQ17R, R41G, E73D, N262Y, N329H showed an eightfold increase
(Fig. 4 C andD). We designated PTENQ17R, R41G, E73D, N262Y, N329H
as ePTEN. The addition of the A4 mutation to ePTEN did not
further increase its membrane association (Fig. 4 E and F), sug-
gesting that the core–tail interaction may be absent. Further-
more, ePTEN did not show nuclear localization. Remarkably,
changing Q17R to Q17E (PTENQ17E, R41G, E73D, N262Y, N329H)
almost completely blocked membrane recruitment and tar-
geted the protein exclusively to the nucleus (nPTEN) (Fig. 4 C
and D).
To validate our findings in human cells, we expressed different

PTEN-GFP constructs in HEK293T cells and examined their
subcellular localization. Consistent with the behavior in Dic-
tyostelium cells, ePTEN showed an eightfold increased associa-
tion with the plasma membrane compared with PTEN and no
nuclear accumulation (Fig. 5 A and B). Furthermore, nPTEN
had no detectable membrane localization and showed strong
nuclear accumulation (Fig. 5 A and B). Moreover, introduction
of A4 into ePTEN did not show an additional increase in either
localization. As was observed in Dictyostelium cells, PTENA4,
PTENQ17R, R41G, E73D, and PTENN262Y, N329H showed two- to
fourfold increases in membrane association (Fig. 5 A and B).
To further characterize ePTEN, we examined associations

between the core and tail regions in in trans interaction assays
(Fig. 1D), phosphorylation of the tail S/T cluster, and phospha-
tase activity. First, we found that the core–tail interaction in

ePTEN was two- to threefold weaker than that in either
PTENQ17R, R41G, E73D or PTENN262Y, N329H (Fig. 6 A and B).
Second, the mutations in ePTEN did not act by interfering with
the phosphorylation of the C-terminal region (Fig. 6 C and D).
Third, it has been suggested that the C-terminal region may mask
the catalytic site in addition to the membrane-binding regulatory
interface because the reduced intramolecular interaction in
PTENN262Y, N329H increased the PIP3 phosphatase activity (20).
ePTEN provided further support for this idea because it had higher
PIP3-C8 phosphatase activity than PTENA4, PTENQ17R, R41G, E73D,
or PTENN262Y, N329H (Fig. 6E).
To determine mechanisms underlying the membrane associa-

tion of ePTEN, we performed a lipid dot blot assay (Fig. 7A) (24,
25). Whole-cell lysates of Dictyostelium cells expressing GFP
fused to PTEN, PTENA4, and ePTEN were incubated with ni-
trocellulose membranes carrying different phospholipids and
their interactions were detected using anti-GFP antibodies.
Whereas PTEN did not bind to any phospholipids, both PTENA4
and ePTEN showed increased association with PI(4,5)P2 (Fig.
7A). In addition to PI(4,5)P2, ePTEN was also found to interact
with other PIP2 isomers such as PI(3,4)P2 and PI(3,5)P2. Im-
munoblotting of whole-cell lysates using anti-GFP antibodies
confirmed full-length GFP fusion proteins (Fig. 7A). The
positive control, GFP fused to the PH domain of PLCδ
(GFP-PHPLCδ), bound selectively to PI(4,5)P2 (Fig. 7A). To
further examine interactions of ePTEN with PI(4,5)P2 in cells,
we depleted PI(4,5)P2 from the plasma membrane, using the
chemically inducible dimerization system (Fig. 7 B and C) (26).
In this experiment, an inositol polyphosphate 5-phosphatase
(Inp54p) fused to mCherry and FKBP (mCherry-FKBP-Inp54p)
was coexpressed with plasma membrane-located FRB (Lyn11-FRB)
in HEK293T cells (Fig. 7C) (26). Upon addition of a chemical
dimerizer (rapamycin) to the culture medium, FRB tightly binds
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Fig. 3. Positively charged residues in the lipid-binding
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copy. (Scale bar, 10 μm.) (B) Intensity of GFP at the plasma
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to FKBP and recruits mCherry-FKBP-Inp54p to the plasma
membrane. PI(4,5)P2 levels were decreased within 60 s after
the addition of rapamycin, as revealed by the dissociation of

GFP-PHPLCδ from the plasma membrane (Fig. 7B). In con-
trast, levels of PIP3 and phosphatidylserine in the plasma mem-
brane were not decreased as shown by biosensors for PIP3
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Fig. 4. ePTEN-GFP (PTENQ17R, R41G, E73D, N262Y, N329H-GFP) is highly enriched at the plasma membrane. (A) The domain structure of PTEN and the position of
mutations are shown. Mutations that affect membrane binding and tail interaction are colored in blue and red, respectively. (B) The 3D structure of PTEN suggests
that Q17, R41, E37, N329, and N262Y form an interface that binds to the plasma membrane at the surface of PTEN (34) (www.ncbi.nlm.nih.gov/Structure/mmdb/
mmdbsrv.cgi?uid=11638). (C–F) Dictyostelium cells expressing different forms of PTEN-GFP (C) and PTENA4-GFP (E) were observed by fluorescence microscopy. (Scale
bar, 10 μm.) (D and F) Intensity of GFP at the plasma membrane was quantified relative to that in the cytosol. Values represent the mean ± SD (n ≥ 15).
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(GFP-PHAKT) and phosphatidylserine (GFP-LactC2) (Fig. 7B)
(27). Supporting our in vitro binding data, depletion of PI(4,5)P2
resulted in dissociation of ePTEN-GFP from the plasma mem-
brane (Fig. 7B). As a negative control, the recruitment of a cat-
alytically inactive form of Inp54p (D281A) to the plasma
membrane did not affect the localization of ePTEN-GFP and
GFP-PHPLCδ (Fig. 7B). Unlike PI(4,5)P2, depletion of PIP3 by
a PI3K inhibitor, LY294002, did not affect the localization of
ePTEN-GFP (Fig. 7D).
To analyze the function of ePTEN in PIP3 signaling, we coex-

pressed a PIP3 biosensor, PHAKT-RFP, along with ePTEN -GFP
in HEK293T cells. Without the expression of PTEN, HEK293T
cells showed high PIP3 levels at the plasma membrane, as ob-
served by the accumulation of PHAKT-RFP (Fig. 8 A and B).
Expression of PTEN-GFP and PTENA4-GFP decreased the
amounts of PHAKT-RFP at the plasma membrane by approxi-
mately fivefold (Fig. 8 A and B). However, a negative control,
PTENC124S-GFP, which is defective in its lipid phosphatase ac-
tivity, showed increased membrane association but did not affect
PHAKT-RFP localization (Fig. 8A and Fig. S1). Similarly,
PTENC124S, A4, although mutated in the catalytic domain, sig-
nificantly decreased PIP3 levels, suggesting that PTENC124S, A4
has a residual catalytic activity or helps recruit endogenous
PTEN to the plasma membrane through dimerization (28). Re-
markably, ePTEN-GFP eliminated detectable PHAKT-RFP at
the plasma membrane (Fig. 8 A and B and Fig. S2), suggesting
that PIP3 levels were decreased by over 95%. Consistent with the
localization of PHAKT-RFP, phosphorylation of AKT at S473,
which is stimulated by PIP3 (29, 30), was decreased approxi-

mately threefold in cells expressing ePTEN-GFP compared with
PTEN-GFP (Fig. 8 C and D). Although most nPTEN accumu-
lated in the nucleus, its ability to decrease levels of PHAKT-RFP
at the plasma membrane or AKT phosphorylation was similar to
that of PTEN (Fig. 8 A–D), suggesting that nPTEN can still in-
teract with PIP3 in the plasma membrane. Supporting this no-
tion, nPTEN rescued defects in the formation of fruiting bodies
in PTEN-null Dictyostelium cells (Fig. S3).
To determine the effect of ePTEN on cancer cell migration,

we expressed PTEN, PTENC124S, PTENA4, or ePTEN in the
MCF-10A PIK3CA cell line, which carries a constitutive active
form of PI3Kα (31, 32). Cells were plated in transwell chambers
and their EGF-stimulated transmigration behaviors were quan-
titatively examined (Fig. 8E). Forty percent of cells expressing
GFP or PTENC124S-GFP migrated in 16 h. This migration be-
havior was suppressed by PTEN-GFP and PTENA4 to 10%.
Remarkably, ePTEN-GFP almost completely blocked migratory
activity (Fig. 8F). Similarly, ePTEN showed the strongest sup-
pression of cell proliferation (Fig. 8F). MCF-10A PIK3CA cells
were plated and their numbers in individual colonies were de-
termined after being cultured for 9 d. We found that PTEN and
PTENA4 significantly suppressed cell proliferation and decreased
the number of cells in each colony by approximately threefold
(Fig. 8F). ePTEN further inhibited cell proliferation with a six-
fold decrease (Fig. 8F).
Recent studies have shown that, in addition to its role as

a lipid phosphatase at the plasma membrane, PTEN also
controls cell proliferation in a phosphatase-independent manner
in the nucleus (8, 33). We used ePTEN and nPTEN to assess the
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Fig. 5. ePTEN-GFP (PTENQ17R, R41G, E73D, N262Y, N329H-GFP) is highly enriched at the plasma membrane in HEK293T cells. (A) HEK293T cells expressing the
indicated forms of PTEN-GFP were observed by fluorescence microscopy. (Scale bar, 20 μm.) (B and C) Intensity of GFP at the plasma membrane was quantified
relative to that in the cytosol. Values represent the mean ± SD (n ≥ 15). The values for PTENR41G, E73D, N262Y, N329H and PTENQ17R, R41G, E73D, N262Y, N329H are
duplicated in B and C.
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relative importance of the membrane or nuclear localizations for
cell migration and proliferation. Clearly, ePTEN showed stron-
ger inhibition for both cell migration (Fig. 8G) and cell pro-
liferation (Fig. 8H) compared with PTEN and nPTEN. The
inhibitory activity of PTEN, ePTEN, and nPTEN for cell mi-
gration depended on their lipid phosphatase activity as the mu-
tation C124S abolished their suppression activity. However,
nPTEN was able to block cell proliferation independently of its
lipid phosphatase activity (Fig. 8H), supporting a role of nuclear
PTEN independent of its phosphatase activity. As a control, we
confirmed that the C124S mutation does not affect the locali-
zation of ePTEN and nPTEN (Fig. 8I).

Discussion
We have previously identified the membrane-binding regulatory
interface in PTEN, consisting of the catalytic domain, the CBR3
loop, and the Cα2 loop (20). The regulatory interface provides
a binding site for the C-terminal tail, which masks the mem-
brane-binding site located in the same interface and regulates
the plasma membrane localization of PTEN. The CBR3 loop of
the C2 domain protrudes from the surface of PTEN and likely
presents positively charged residues including K260 and K263 to
negatively charged head groups of phospholipids in the plasma
membrane. Importantly, residues N262 and K269 in the same
loop are not required for membrane binding but are needed for
interaction with the inhibitory tail, providing a competitive
mechanism for membrane association. In addition, the Cα2 loop
that extends near the CBR3 loop also supports interactions with
the tail domain. Individual mutations in either the CBR3 or the
Cα2 loop do not appear to disrupt interactions of the C2 domain
with the tail, but the combination eliminates these interactions,
leading to the recruitment of PTEN to the plasma membrane.
Our model supports and extends the earlier hypothesis that the
CBR3 loop of the C2 domain is a membrane-binding site (34).
In the current study, we found that two residues, R41 and E73,

which are located in the phosphatase domain, also play impor-

tant roles in the interaction with the tail domain. Both residues
are located in the loop extending from the regulatory interface
toward the plasma membrane. Unlike previously identified
mutations in the catalytic center, such as C124R/S and H93R,
R41G and E73D do not inhibit the phosphatase activity of
PTEN, separating the residues necessary for catalytic activity
from those for membrane association. Combined mutations in
the C2 and phosphatase domains have a stronger effect on
membrane association than do the A4 mutations, which sub-
stitute four phosphorylation sites in the C-terminal tail. Al-
though the A4 mutations have been thought to completely open
the conformation of PTEN (e.g., completely dissociate the tail
from the core region), our findings suggest that PTENA4 only
partially releases the tail inhibition.
The PIP2-binding domain is located in the N terminus (amino

acid residues 6–15) and has been suggested to be important for
membrane association and nuclear localization (10, 13, 22). By
individually mutating four positively charged residues, we sepa-
rated the residues necessary for membrane association from
nuclear localization. These two functions of the PIP2-binding
domain are mediated by distinct, and partially overlapping, res-
idues. Whereas R14 and R15 likely interact with membrane
lipids in cells, K13 and R14 serve as part of the nuclear locali-
zation signal. Because K13 and R14 are involved in PIP2 binding
(12, 16, 19, 21, 35), it is conceivable that PIP2 might play a role in
the localization in the nucleus as well as at the plasma mem-
brane. Immediately adjacent to this region, the mutation Q17R
promotes membrane recruitment when inhibition by the tail
is removed. Q17R also blocks nuclear localization, thereby
enriching PTEN on the plasma membrane. The levels of positive
charges in the PIP2-binding domain appear to be a key mecha-
nism of localization to the plasma membrane.
Based on the mechanistic information, we genetically engi-

neered ePTEN, PTENQ17R, R41G, E73D, N262Y, N329H, a version of
PTEN with significantly increased membrane association and
PIP3 phosphatase activity (Fig. 8J). The four mutations, R41G,
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Fig. 6. ePTEN-GFP (PTENQ17R, R41G, E73D, N262Y, N329H-GFP)
does not bind to the inhibitory C-terminal tail. (A) In-
teraction of the C-terminal domain of PTEN with its
N-terminal core region was assessed in pull-down assays.
PTEN352–403-YFP-FLAG was added to whole-cell lysates
expressing the indicated PTEN-GFP constructs and
immunoprecipitated with beads coupled to anti-FLAG
antibodies. Bound fractions (IP) were analyzed with
antibodies to GFP and FLAG. (B) Band intensity was
quantified (n = 3). (C) Whole-cell lysates expressing dif-
ferent PTEN-GFP constructs were analyzed by immuno-
blotting with antibodies against phospho-PTEN (pS380)
and GFP (PTEN-GFP). (D) Band intensity was quantified
(n ≥ 3). (E ) The indicated PTEN-GFP proteins were
immunopurified from Dictyostelium cells, and phospha-
tase activities were measured (n ≥ 3).
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E73D, N262Y, and N329H, synergistically dissociate the
C-terminal tail from the core region of PTEN and therefore expose
the membrane-binding site. However, it is also possible that
these mutations can directly enhance interactions with the
plasma membrane. Furthermore, we speculate that increases
in the phosphatase activity of ePTEN result from opening the
conformation, rather than bringing ePTEN to the plasma
membrane, because increased activity was observed in our in
vitro assay in which a monodisperse substrate, C8-PIP3, was
used. The C-terminal tail likely masks the catalytic domain as
well as the membrane-binding site. Releasing C-terminal in-
hibition allows ePTEN to more efficiently bind to its substrates.
ePTEN was found to be a potent repressor of PIP3 production

and an inhibitor of AKT phosphorylation. In addition to the
release of C-terminal inhibition, the substitution of a residue in
the PIP2-binding domain (Q17R) was a critical component in the
creation of ePTEN. If similar activations can be achieved phar-
macologically, it may represent an excellent strategy to enhance
the tumor suppressor activity of PTEN as a therapeutic target.
In many cancers, PIP3 signaling is overactivated by abnormal
activation of PI3Ks or RasGTPases, leaving intact PTEN avail-
able for activation. In addition, heterozygous defects of PTEN

are associated with cancers, and therefore the activation of the
remaining PTEN could be useful in such cases. Finally, by in-
troducing ePTEN into cancer cells, it may be possible to achieve
gene therapy for certain types of cancers in the future.

Experimental Procedures
Cell Culture and Plasmids. All Dictyostelium cells were cultured in HL5 me-
dium at 22 °C. Cells expressing PTEN-GFP were selected by G418 (20 μg/mL).
The primers and plasmids used in this study are listed in Tables S1 and S2.
Human PTEN was mutagenized using overlap extension PCR as previously
described (20, 36) and cloned into pKF3, a Dictyostelium-expressing plasmid
carrying GFP. All constructs were confirmed by DNA sequencing. HEK293T
cells were maintained in DMEM (Invitrogen) supplemented with 10%
(vol/vol) FBS (Invitrogen). Cells were transiently transfected with 1 μg of DNA
plasmids on eight-well chambered coverglass (Lab-TekII; Nunc), using 3 μL of
GeneJuice (Novagen), following the manufacturer’s protocol. Cells were then
incubated for 24 h before observation.

Isolation of PTEN Mutants. We generated a library containing human PTEN
randomly mutagenized as described previously (20). Briefly, the cDNA of
human PTEN was mutagenized using a Diversity PCR random mutagenesis
kit (Clontech) and cloned into the Dictyostelium expression vector pKF3
plasmid. The PTEN library was electroporated into Dictyostelium cells (25)

A

B C

D

Fig. 7. ePTEN binds to PI(4,5)P2 in vitro and in cells.
(A) Lipid dot blot assays. Dictyostelium cells expressing
GFP-PHPLCδ, PTEN-GFP, PTENA4-GFP, and ePTEN-GFP
were lysed and incubated with nitrocellulose mem-
branes carrying the indicated phospholipids. Images
are representative of more than three independent
experiments. Protein–lipid interactions were detected
by anti-GFP antibodies. Immunoblotting of whole-cell
lysates using anti-GFP antibodies is shown. (B and C)
HEK293T cells expressing mCherry-FKBP-Inp54p and
Lyn11-FRB along with the indicated GFP fusion pro-
teins were observed at 30 s before and 60 s after the
addition of 2 nM rapamycin. (Scale bar, 20 μm.)
Rapamycin dimerizes FKBP and FRB and brings
mCherry-FKBP-Inp54p to the plasma membrane (C).
(D) HEK293T cells carrying the indicated GFP con-
structs were treated with the PI3K inhibitor LY294002
for 5 min and observed by fluorescence microscopy.
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and screened for increased membrane localization of PTEN-GFP. To identify
mutations that resulted in increased membrane localization, the PTEN gene
isolated from individual clones was PCR amplified and sequenced.

PTEN-GFP Localization. Cells expressing different PTEN-GFP constructs were
washed, resuspended in development buffer (DB) containing 20 μM MG132
to block proteosomal degradation of PTEN-GFP, and placed on eight-well
chambered coverglass (Lab-TekII; Nunc), as described in ref. 20. Fluorescent
images were acquired under a Leica DMI 6000 inverted microscope equipped
with a 63× objective and captured by a CoolSNAP EZ camera. All images
were analyzed using ImageJ software. To quantify fluorescence intensity of
PTEN-GFP at the plasma membrane and nucleus relative to the cytosol, we
measured and averaged fluorescence intensity in a 1-pixel area from three
different positions in each compartment. Background fluorescence intensity
was subtracted from each measurement. The nucleus was identified by DAPI
staining. To integrate fluorescence intensity of PTEN-GFP at the plasma
membrane, the total intensity at the cell periphery was measured and nor-
malized relative to that in the cytosol.

Development. PTEN-null Dictyostelium cells were grown exponentially (4 ×
105 cells/mL), washed twice in DB (10 mM phosphate buffer, 2 mM MgSO4,
0.2 mM CaCl2), and plated on 1% nonnutrient DB agar for 36 h (37, 38). Cells
were observed under an Olympus SZ-PT dissecting microscope equipped
with a 6× objective and their images were taken by a Nikon 4500 camera.

Interactions Between PTEN and Its C-Terminal Tail. Interactions between PTEN
and its C-terminal tail (PTEN352–403-YFP-FLAG) were examined, as described
in ref. 11. HEK293T cells were cultured in DMEM supplemented with 10%
(vol/vol) FBS on a 100-mm dish, transiently transfected with 8 μg of the plasmid
carrying PTEN352–403-YFP-FLAG using GeneJuice (Novagen), and then cultured
for 24 h in DMEM with 10% (vol/vol) FBS. HEK293T cells were lysed in 1 mL of
lysis buffer containing 1% Nonidet P-40, 50 mM NaCl, 20 mM Tris·HCl (pH
7.5), 10% (vol/vol) glycerol, 0.1 mM EDTA, phosphatase inhibitor mixture
(Sigma), and protease inhibitor mixture (Roche). The lysates were then
cleared by centrifugation at 16,000 × g for 20 min at 4 °C. Dictyostelium cells
expressing WT and mutant versions of PTEN-GFP were lysed in 1% Nonidet
P-40, 300 mM NaCl, 10 mM Tris·HCl (pH 7.5), 2 mM EDTA, phosphatase in-
hibitor mixture (Sigma) and protease inhibitor mixture (Roche). The lysates
were then cleared by centrifugation at 13,000 rpm for 20 min at 4 °C. One
hundred microliters of the HEK293T lysates was mixed with 500 μL of the
Dictyostelium lysates. Beads coupled to anti-FLAG antibodies (Sigma) were
added to the mixtures and incubated for 2 h. The beads were washed twice
in the lysis buffer and the bound fractions were analyzed by SDS/PAGE and
immunoblotting, using antibodies to FLAG and GFP.

Immunoblotting. Proteins were resolved by SDS/PAGE and transferred onto
a PVDF membrane. Antibodies against PTEN (138G6; Cell Signaling);
phosphorylated PTEN at residues S380, T382, and T383 (44A7; Cell Signaling);
AKT (9272; Cell Signaling); phosphorylated AKT (Serine 473; Cell Signaling
4058); GFP (11E5; Molecular Probes); and actin (C-11; Santa Cruz Biotechnology)
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PTEN-GFP constructs along with PHAKT-RFP were
observed by fluorescence microscopy. (Scale bar,
10 μm.) (B) Intensity of RFP at the plasma mem-
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(C ) Whole-cell lysates expressing different PTEN-
GFP constructs were analyzed by immunoblot-
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were used. Immunocomplexes were visualized by fluorophore-conjugated
secondary antibodies including anti-rabbit Alexa Fluoro 488 (Invitrogen),
anti-goat Aelxa Fluoro 647 (Invitrogen), and anti-mouse Dylight 649
(Jackson ImmunoResearch Laboratories) and detected using a PharosFX
Plus molecular imager (Bio-Rad).

Phosphatase Activity. The phosphatase activity of PTEN was measured, as
described previously (19). WT and mutant forms of PTEN fused to GFP were
expressed in Dictyostelium cells and immunopurified using GFP-Trap agarose
beads (Allele Biotech). The phosphatase activity was determined by mea-
suring release of phosphates from PIP3 diC8, using a Malachite Green
Phosphatase assay kit (Echelon). The activity was normalized to amounts of
purified PTEN-GFP proteins.

Lipid Dot Blot Assay. The lipid dot blot assay was performed as described
previously (24, 25, 36). Briefly, Dictyostelium cells expressing different
PTEN-GFP constructs were starved for 2 h in 10 mM phosphate buffer (pH
7.0), 2 mM MgSO4, and 0.2 mM CaCl2 and then washed twice in 20 mL of
ice-cold 10 mM sodium phosphate (pH 7.0). Then, cells were lysed at 5 × 108

cells/mL in 10 mM sodium phosphate (pH 7.0), 0.5% Nonidet P-40, 150 mM
NaCl, and 1% protein inhibitor mixture (Sigma) for 10 min on ice. Cell
lysates were cleared twice at 10,000 × g for 10 min at 4 °C. The super-
natants were mixed with equal volumes of 10 mM sodium phosphate (pH
7.0) and 150 mM NaCl. Nitrocellulose membranes spotted with different
phospholipids (PIP membrane P-6001; Echelon) were incubated in PBS

containing 0.05% Tween 20 and 3% (wt/vol) fatty acid-free BSA to block
nonspecific binding and then mixed with the lysates for at least 3 h. After
extensive washing, the membranes were probed with anti-GFP antibodies
followed by secondary antibodies conjugated with Alexa 647 (Invitrogen)
and scanned using a PharosFX Plus molecular imager.

Cell Proliferation Assay. MCF-10A cells that carry a PIK3CA knock-in mutation
(E545K) were cultured in DMEM/F12 medium supplemented with 1% FBS,
10 μg/mL insulin, 0.5 μg/mL hydrocortisone, and 0.1 μg/mL cholera toxin in
the absence of EGF (31, 32). Cells were infected with lentiviruses expressing
different PTEN-GFP constructs and cultured for 5 d to allow the expression of
PTEN constructs. Cells were plated at the density of 100 cells per well on
96-well plates (Nunc) and cultured for 9 d. The numbers of cells were de-
termined in individual colonies that expressed PTEN-GFP constructs, using
a Zeiss Axio Observer inverted microscope equipped with an AxioCam.

Statistical Analysis. P values were determined using Student’s t test: *P <
0.05, **P < 0.01, and ***P < 0.001.
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