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SUMMARY

Polarized migrating cells display signal transduction
events, such as activation of phosphatidylinositol
3-kinase (PI3K) and Scar/Wave, and respond more
readily to chemotactic stimuli at the leading edge.
We sought to determine the basis of this polarized
sensitivity. Inhibiting actin polymerization leads to
uniform sensitivity. However, when human neutro-
phils were ‘‘stalled’’ by simultaneously blocking actin
and myosin dynamics, they maintained the gradient
of responsiveness to chemoattractant and also dis-
played noise-driven PIP3 flashes on the basal mem-
brane, localized toward the front. Thus, polarized
sensitivity does not require migration or cytoskeletal
dynamics. The threshold for response is correlated
with the static F-actin distribution, but not cell shape
or volume changes, membrane fluidity, or the preex-
isting distribution of PI3K. The kinetics of responses
to temporal and spatial stimuli were consistent with
the local excitation global inhibition model, but the
overall direction of the response was biased by the
internal axis of polarity.

INTRODUCTION

Directed cell migration is a fundamental cell biological process

that plays an important role in embryogenesis and wiring of the

nervous system, immune cell trafficking, wound healing, and a

host of other critical physiological events. It also contributes to

the pathogenesis of inflammatory diseases and cancer metas-

tasis. Neutrophils exhibit a robust chemotactic response to

chemical gradients and serve as a model for understanding

this process. The similarity in the behavior of neutrophils to

that of simple amoeboid cells, such as Dictyostelium, indicates

that chemotaxis is a highly conserved fundamental cell biological

process.

The mechanisms cells use to sense and migrate toward

external cues are beginning to be elucidated. Directed migration

depends on the seamless integration of motility, directional
1110 Cell Reports 9, 1110–1121, November 6, 2014 ª2014 The Auth
sensing, and polarity. Motility relies on spontaneous activation

of signaling and cytoskeletal events and extension of pseudo-

pods. Directional sensing is independent of the cytoskeleton,

since external gradients can localize signaling activities in immo-

bilized cells. Chemotactic cells are also often polarized, which in-

creases the efficiency of the response.

Even without directional information, cells can establish an

elongated polarized state with differential sensitivity between

the front and the back. This cellular state is semistable and can

be reset. Neutrophil-like HL-60 cells often make a ‘‘U-turn’’

rather than generate a new front when a chemoattractant is

delivered by a micropipette toward the back of the cell (Gerisch

and Keller, 1981). Elongated Dictyostelium cells, late in their

developmental program, behave similarly when presented with

a new gradient (Futrelle et al., 1982; Swanson and Taylor,

1982). Thus, when the gradient is shifted, polarized cellsmaintain

their original direction and then gradually reorient toward the

gradient. This suggests that cell polarity and gradient sensing

might be separate, interacting phenomena. Although the estab-

lished leading edge is relatively more sensitive to chemoattrac-

tants, cells can be forced to repolarize by increasing the steep-

ness of the reverse gradient, indicating that some sensitivity is

maintained around the entire perimeter. It is unclear what deter-

mines this dynamic ‘‘polarized sensitivity’’ and how it is related to

gradient sensing.

It has been assumed that cell movement and cytoskeletal dy-

namics play a critical role in establishing and maintaining polar-

ity. Most schemes for polarity couple positive feedback at the

anterior with global inhibitory mechanisms to prevent additional

fronts (Howell et al., 2009; Meinhardt, 1999; Neilson et al., 2011;

Orchard et al., 2012). Recent models, for example, suggest that

protrusions at the front alter membrane properties, such as

membrane tension or curvature, which affects cytoskeletal ac-

tivity at secondary sites (Frost et al., 2009; Houk et al., 2012).

There is general agreement that pharmacological perturbations

of F-actin abolish cell polarity (Casella et al., 1981; Spector

et al., 1983). Signal transduction responses can still be elicited

by chemoattractant in such immobilized cells, but the cells are

equally sensitive around their perimeter. These observations

support the belief that cytoskeletal dynamics and migration

are essential for maintenance of the polarized state (Wang

et al., 2002).
ors

mailto:pnd@jhmi.edu
http://dx.doi.org/10.1016/j.celrep.2014.09.047
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2014.09.047&domain=pdf


Studies with a pharmacological cocktail (JLY) containing actin

disassembly inhibitor jasplakinolide (J), actin polymerization in-

hibitor latrunculin B (L), and ROCK inhibitor Y27632 (Y), which

preserves the existing actin cytoskeleton while blocking assem-

bly, disassembly, and rearrangement of the actin network, also

suggest that cytoskeletal dynamics are important for aspects

of polarity. JLY-treated HL-60 neutrophils stop migrating and

maintain their shape, although Rac activity seen at the leading

edge of moving cells disappears (Dandekar et al., 2013; Peng

et al., 2011). Thus a dynamic cytoskeleton appears to be neces-

sary to maintain polarization in the signal transduction system.

However, polarized sensitivity to chemoattractants was not

examined in these experiments.

By manipulating the polarity of HL-60 neutrophils and exam-

ining the responses of moving and immobilized cells to uniform

increases and gradients of the chemoattractant, N-formyl-L-me-

thionyl-L-leucyl-L-phenylalanine (fMLP), we were able to distin-

guish the contributions of motility, directional sensing, and

polarity to the overall response. As previously shown for latrun-

culin-treated cells, we find that JLY-treated, ‘‘stalled’’ cells

respond and adapt to uniform stimuli and respond persistently

to applied gradients. Furthermore, we find that polarized sensi-

tivity depends strongly on cytoskeletal architecture and does

not depend on cell shape, volume, membrane curvature, or

membrane fluidity. Thus, the overall directional response of the

cell depends on the balance between the external gradient and

the polarized architecture of the cytoskeleton. These conclu-

sions are consistent with the turning behaviors of cells exposed

to shifting gradients.

RESULTS

Responses to Chemoattractant and Spontaneous
Activities Are Polarized in JLY-Treated, ‘‘Stalled’’
Neutrophils
We first compared the morphology and migration behavior of

cells before and after JLY treatment. As previously reported,

cells kept migrating in the presence of a ROCK inhibitor

Y27632 but stopped as soon as latrunculin B and jasplakinolide

were added (Peng et al., 2011; Xu et al., 2003). Cell shape,

judged by phasemicroscopy, and actin cytoskeletal architecture

examined by the F-actin biosensor, Lifeact, was maintained for

at least 2 hr. We also verified that the rate of fluorescence recov-

ery after photobleaching (FRAP) of actin-mCherry was negligible

(see below). Latrunculin B treatment also immobilized cells, but

the cell shape and cytoskeletal architecture was not maintained

(Figure 1A) (Riedl et al., 2008). As observed in Dictyostelium, the

PIP3 biosensor pleckstrin homology domain of serine-threonine

protein kinase AKT1 (PH-AKT), typically observed at the front

of migrating cells, decreased following latrunculin B treatment

(Figure S1A). Furthermore, PIP3 rapidly decreased following

JLY treatment of cells migrating in uniform fMLP (Figure S1A).

This suggests that even the JLY-stabilized cytoskeleton cannot

maintain activated phosphatidylinositol 3-kinase (PI3K).

Previous studies have suggested that there is feedback from

actin polymerization to activation of PI3K, although the conclu-

sions have been based principally on the ability of latrunculin B

to block the process (Inoue and Meyer, 2008; Srinivasan et al.,
Cell R
2003; Wang et al., 2002). When we transiently photoactivated

Rac in differentiated HL-60 cells expressing PH-AKT-GFP, we

observed a 14.4% ± 1.5% increase in PIP3 (Figure S1B). How-

ever, the increase was negligible in cells treated with JLY or

latrunculin B plus nocodazole. These observations suggest

that actin dynamics and/or movement are required for feedback

regulation from Rac activation to PI3K activity in neutrophils.

Surprisingly, when we exposed the JLY-treated, stalled cells

to a uniform, low concentration (1nM) of fMLP, not only did

they generate PIP3, but it was accumulated in a gradient (Figures

1B and 1C; Figure S1C; Movie S1). The levels were higher at the

front and sides than the back, indicating that the anterior is more

sensitive to PI3K activation. When we increased the global fMLP

concentration (100 nM) applied to the same cell, there was no

significant difference between back and front maximum mem-

brane PH-AKT accumulation (Figure 1C). The same results

were obtained whether cells were pretreated with JLY for several

minutes or 2 hr. Cells with obviously polarized morphology were

used for quantification (Figure S1E). Using the C5a receptor as a

membrane marker, we verified that the graded signal was not

due to an uneven membrane distribution from front to back (Fig-

ure S1A). In contrast to the JLY cells, rounded cells treated with

nocodazole and latrunculin B responded equally along the entire

membrane at all concentrations of fMLP (Figures 1B and 1C;

Movie S2). The responses at the back of the JLY-treated cells

peaked at a lower level and were briefer than those at the front

and sides (Figure 1C; Figures S1C and S1D). Both the amplitude

and duration contribute to a smaller integrated response seen at

the back. PH-AKT translocated to a broader membrane region

with increasing doses of fMLP (Figure 1D). Together, these ob-

servations suggest there is an anterior-posterior gradient of

sensitivity for chemoattractant-mediated activation of PI3K and

PIP3 accumulation in the JLY-treated, stalled neutrophils.

Previous studies have shown that Hem1 is spontaneously re-

cruited in waves to the basal surface ofmigrating neutrophils and

accumulates at the edge of the basal surface in response to

fMLP (Weiner et al., 2007). The spontaneous waves are silenced

by latrunculin. Similarly, we found that Hem1waves disappeared

in JLY-treated cells. Although JLY-treated cells were less sensi-

tive than untreated cells, Hem1 was recruited transiently to the

boundary of the basal membrane after stimulation with 100 nM

fMLP, and the response was more persistent at the front than

at the back (Figure 1E), as was the case for PIP3 production

(Figure S1D).

Recent studies showing there are independent excitable

signal transduction and oscillatory cytoskeletal networks in

Dictyostelium cells and the fact that cytoskeletal component

Hem-1 displays propagating waves in neutrophils (Huang

et al., 2013; Weiner et al., 2007) prompted us to further explore

the similarities in the chemotactic systems in the two cell types.

To ask whether there are similar separable networks in neutro-

phils, we monitored by total internal reflection fluorescence

(TIRF) microscopy the spontaneous recruitment of PH-AKT to

the membrane on the basal surface of randomly migrating or

stalled JLY-treated neutrophils. We observed spontaneously ap-

pearing PIP3 patches with a lifetime of a few minutes in the ma-

jority of randomly migrating cells. T-stacks (Huang et al., 2013) of

coexpressed PH-AKT and Lifeact showed the two overlapped
eports 9, 1110–1121, November 6, 2014 ª2014 The Authors 1111
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Figure 1. Response to Chemoattractant in Stalled Neutrophils

(A) Phase images of JLY or latrunculin B + nocodazole-treated cells. Lifeact localization before and after drug treatment. Scale bar, 10 mm.

(B) Fluorescence images of PIP3 production with uniform fMLP stimulation using PH-AKT-GFP expressing HL-60 neutrophils treated with JLY or latrunculin B +

nocodazole. Scale bar, 10 mm. See also Movies S1 and S2.

(C) Quantification of PIP3 production with different doses of global fMLP in JLY or latrunculin B + nocodazole-treated neutrophils. Left panel is peak responses to

different concentrations of fMLP along the perimeter of JLY-treated cells normalized to the expression level. The differences between back and front peak

response to 0.1, 0.3, 1, and 3 nM fMLP are significant (**p < 0.01; ***p < 0.001). n = 14 for 0.1 nM fMLP, n = 19 for 0.3 nM fMLP, n = 25 for 1 nM fMLP, n = 20 for 3 nM

fMLP, and n = 24 for 100 nM fMLP. Error bars represent SEM. Middle panel is ‘‘positioned quantification’’ for latrunculin B + nocodazole cells. The position is

ranked by most, more, less, or least maximum delta PH-AKT gray value within 30 s after stimulation. There is no significant difference between groups. n = 30 for

0.3 nM fMLP, n = 22 for 1 nM fMLP, n = 21 for 3 nM fMLP, and n = 27 for 100 nM fMLP. Error bars represent SEM. Right panel is the relationship between ratio of

‘‘front/back’’ (for JLY) or ‘‘most/least’’ (for latrunculin B + nocodazole) maximum delta PH gray value and increasing fMLP concentration. See also Figure S1.

(D) Dose summary of responsivemembrane fraction in JLY-treated neutrophils. The box plot shows themedian, 25th, and 75th percentiles. n = 19 for 0.3 nM fMLP,

n = 25 for 1 nM fMLP, n = 20 for 3 nM fMLP, and n = 24 for 100 nM fMLP. **: p < 0.01; ***: p < 0.001.

(E) TIRF image of Hem1-YFP in JLY-treated neutrophils. Arrowheads point to Hem1 recruited to the boundary of the basal membrane. Cells in Y were exposed

to 1 nM fMLP, then treated with JL, and then stimulated with 100 nM fMLP as indicated. On the right, latrunculin B-treated cells are shown for comparison. Scale

bar, 10 mm.
but were not precisely colocalized (Figure S1F; Movie S3). Inter-

estingly, we observed similar dynamic PIP3 patches in JLY-

treated cells; however, unlike in randomly migrating cells, the

F-actin signal was static (Figure 2A). There was more PIP3 activ-

ity at the anterior of the cell, where static F-actin was enriched,
1112 Cell Reports 9, 1110–1121, November 6, 2014 ª2014 The Auth
than at the back (68.1% versus 31.9% of total intensity of PIP3

fluctuations, p < 0.001, n = 7) (Figure 2A; Movie S4). Coex-

pressed membrane marker C5aR showed that the PH-AKT

flashes were not due to membrane deformations or rearrange-

ments (Figure 2B; Movie S5). The addition of 20 mM PI3Kg
ors
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Figure 2. TIRF Images of Spontaneous Recruitment of PH-AKT to the Membrane on the Basal Surface of JLY-Treated Neutrophils

(A) Dual-view TIRF images of coexpressed PH-AKT and Lifeact signals in JLY-treated neutrophils. T-stacks of both panels in the same cross-section show the

signal dynamics. Vertical line scans at the point indicated by the yellow arrows are used to highlight dynamic changes in gray value over time. Detailed description

of vertical line scans is described in Supplemental Experimental Procedures. See also Movie S4.

(B) Dual-view TIRF images of coexpressed PH-AKT and C5aR signals in JLY-treated neutrophils. T-stacks and vertical line scans of both panels are also shown.

See also Movie S5.

(C) TIRF images of PH-AKT in JLY-treated neutrophils treated with PI3K inhibitor AS605240. T-stack and a vertical line scan are also shown.
inhibitor AS605240 abolished the PH-AKT flashes (Figure 2C).

Taken together, these observations show the chemotactic signal

transduction network in neutrophils displays spontaneous activ-

ity in the absence of cytoskeletal activity or movement and,

furthermore, that the activity is biased toward the front.

Polarized Sensitivity Is Correlated with the Arrested
F-actin Distribution and Is Independent of Cell Shape,
Volume, Membrane Curvature, or Fluidity
Since polarized migrating neutrophils usually have more F-actin

at the front (Nishikimi et al., 2009), we speculated that the polar-

ized sensitivity might be related to the arrested F-actin distribu-

tion. Examples of cells with broader or narrower Lifeact regions

appear to support this (Figure 3A). Quantification showed that

when exposed to a uniform, low concentration of fMLP, JLY-

treated cells with narrower regions of F-actin, as indicated by a

higher ratio of Lifeact fluorescence intensity at the front versus

the back, also had narrower zones of PIP3 production on the

membrane. The asymmetric response was nearly absent when
Cell R
we increased the fMLP concentration applied to the same cell

(Figure 3A; Movies S6 and S7).

We assessed several other factors that could potentially un-

derlie the polarized sensitivity of the JLY-treated cells. First,

there is a marked difference in shape and curvature between

fan-like fronts and elongated backs. Since polarized HL-60 neu-

trophils with broad backswere rare, we artificially producedwide

tails in polarized cells by exposing JLY-treated cells to hypotonic

buffer. At room temperature, the increased volume caused by

hypotonic treatment lasts for at least 25 min (Ting-Beall et al.,

1993). In our experiments, some of the JLY-treated cells that

had loosely attached backs formed large rounded backs that

had even less curvature than the front. When we exposed these

cells to low fMLP, they still did not respond at the back. The

rounded backs did respond to higher concentrations of fMLP

(Figure 3B). Thus, the polarized sensitivity was independent of

cell shape, volume, or membrane curvature.

Interestingly, in some of the JLY-treated cells that appeared to

adhere strongly to the substrate at the rear, hypotonic treatment
eports 9, 1110–1121, November 6, 2014 ª2014 The Authors 1113
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Figure 3. Polarized Sensitivity Is Correlated with the Arrested F-actin Distribution and Is Independent of Other Factors

(A) Fluorescence images of coexpressed PH-AKT and Lifeact signals in JLY-treated neutrophils exposed to uniform fMLP. The upper two panels or lower panel

show cells with asymmetric or uniform Lifeact distributions, respectively. Merged images show the extent of co-localization. Graph on the right shows the

relationship between length of PH-AKT as a fraction of the perimeter and front to back Lifeact fluorescence ratio. Trend lines (second degree polynomial) are also

shown. Scale bar, 10 mm. See also Movies S6 and S7.

(B) Fluorescence images of PH-AKT in neutrophils treated with JLY for 10 min followed by 1:3 volume of hypotonic buffer for 20 min. Cells were exposed to

uniform fMLP. The arrowheads indicate PIP3 accumulation after fMLP stimulation. Scale bar, 10 mm.

(legend continued on next page)
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did not produce a rounded back but instead induced blebs from

the sides in the zone where the F-actin content dramatically

decreased (32 out of 52 cells form side blebs; Figure 3C). This

observation suggested that the membrane was more loosely

attached to the cortex at the sides and that polarized sensitivity

therefore cannot be traced to a differential attachment of the

membrane to the cortex. Curiously, these blebs formed in hypo-

tonic conditions retracted spontaneously or after adding fMLP

(Figure S2A).

PI3K is found at the leading edge of chemotaxing Dictyoste-

lium cells and several types of leukocytes (Funamoto et al.,

2002; Gómez-Moutón et al., 2004), and if it were trapped at the

fronts of the immobilized neutrophils by the JLY-treatment, the

fronts would be expected to produce more PIP3 in response to

uniform stimuli. Using PI3Kg catalytic subunit antibody staining,

we verified that the enzyme was colocalized with PH-AKT at the

leading edge in fMLP-treated, migrating HL-60 cells. However,

we found that in the JLY-treated cells, PI3Kg was not localized

at the fronts before stimulus addition. Statistical analysis showed

that PI3Kg translocated selectively to the membrane at the front

of JLY-treated neutrophils after exposure to uniform low fMLP,

while a high fMLP caused a broader translocation of this enzyme

(Figure 3D). These observations indicate that the polarized accu-

mulation of PIP3 in JLY-treated cells is due to specific recruit-

ment of PI3Kg to the front.

Although the cytoskeleton is static in JLY-treated cells, the

membrane may remain fluid. We used FRAP assays to assess

components that reflect membrane fluidity. As noted above,

actin dynamics were stalled in the JLY-treated cells, as there

was no recovery of actin-mCherry fluorescence within 12 min af-

ter photobleaching (Figure S2B). By contrast, Lifeact red fluores-

cent protein (RFP) fluorescence recovered quickly, presumably

since it exchanged rapidly on the F-actin (Figure S2B). Similarly,

the PH-AKT signal recovered 90%within 2 min. The C5aR signal

recoveredmoreslowly (50%within 3min), and the recovery came

from adjacentmembrane, not the cytosol. Importantly, therewas

no significant difference inC5aRmobility in JLY- versus latruncu-

lin B-treated cells, and furthermore, no positional difference was

found in stalled neutrophils (Figure 3E). Thus, differences inmem-

brane fluidity do not appear to contribute to polarized sensitivity.

The Stimulus-Response Behavior of the Chemotactic
System in Immobilized Cells
Previous studies have suggested that, like PI3K, Ras is activated

by chemoattractants in neutrophils, although the localization of

the activated form was not determined (Zheng et al., 1997). To

extend these studies, we stimulated cells with fMLP and

measured activation of K Ras and N Ras using pull-down assays

with subtype-specific antibodies. We found that both subtypes
(C) Phase and fluorescence images of Lifeact-expressing JLY-treated neutrophils

after each decrease are indicated. The duration of each treatment is approximat

(D) Immunofluorescent staining of the catalytic subunit of PI3Kg in randomly mi

stimulation. Scale bar, 10 mm. Bar graphs show the front to back ratio of PH-AKT

**p < 0.01; ***p < 0.001. Error bars represent SEM.

(E) C5aR fluorescent images before and after the FRAP assay in latrunculin B- and

time. Scale bar, 10 mm. Line graph shows the kinetics of bleaching and recove

bleaching, n = 12 for JLY back membrane bleaching, and n = 8 for latrunculin B

Cell R
were transiently activated upon fMLP stimulation, peaking

around 30 s to 1min (Figure S2C).We then expressed a fragment

of Raf-1 containing the Ras binding domain plus the cysteine-

rich domain (Raf-1151–220-GFP) to study Ras activation in living

cells. Raf-1151–220-GFP translocated to the membrane after

100 nM fMLP stimulation and then accumulated at the leading

edge during migration (Figure S2D). Using this more sensitive

biosensor, we observed responses to fMLP in 75% of the cells

that were studied (33 out of 44 cells). The sites of Ras activation

and PIP3 accumulation closely coincided, indicating that the

polarized sensitivity we have described may involve multiple

components of the signal transduction network (Figure S2E).

Differences in the responses of control and JLY-treated

neutrophils to chemoattractant allowed us to separate the direct

effects of the stimulus from those due to feedback from move-

ment and/or cytoskeletal dynamics. As noted above, a uniform

increase in chemoattractant elicits a transient activation of Ras

or PI3K, but when the cells ‘‘break symmetry’’ and migrate,

they display persistent PIP3 at the leading edges (Servant

et al., 2000). Unlike in migrating cells, the transient activations

of PI3K and Ras triggered by uniform increases of fMLP in

JLY-treated cells were not followed by persistent activity at the

leading edge (Figures 4A and 4D; Figures S1D and S2F). Thus,

the response to chemoattractant adapts during continuous uni-

form stimulation and the persistent response observed at the

front of migrating cells depends on feedback from movement

and/or cytoskeletal dynamics.

However, when JLY-treated neutrophils were exposed to a

gradient of chemoattractant, the initial response was followed

by a continuous steady-state response directed toward the high

side. As shown in Figures 4A and 4B, when an fMLP-filled micro-

pipette was placed in front of an immobilized cell, PH-AKT first

translocated to the cell membrane, then formed a stable ‘‘cres-

cent’’ facing more or less toward the tip. When the pipette was

lifted, ending the stimulation, the PH-AKT crescent disappeared.

Furthermore, thesteady-state response towardgradient lastedas

long as the gradient was present and disappeared rapidly when

the stimulus was removed. The longest time tested was 30 min

(Figures 4C and 4D; Movie S8). Comparison of the kinetics of

the responses to30minuniformorgradient stimuli clearly showed

that the former was transient, whereas the latter was persistent.

Thus, as previously reported for responses of latrunculin-treated

Dictyostelium cells (Parent et al., 1998), exposure of neutrophils

to a gradient appears to bypass the adaptation process.

Polarity andGradient Sensing Are Separable, Integrated
Phenomena
To assess the effects of polarity on the directional response to a

gradient, we compared polarized and unpolarized immobilized
exposed to sequential buffers of decreasing osmolarity as indicated. The times

ely 5 min. Scale bar, 10 mm.

grating and JLY-treated neutrophils expressing PH-AKT with or without fMLP

and PI3Kg. Numbers in the bars show the number of cells quantified. *p < 0.05;

JLY-treated neutrophils. T-stack images show the fluorescence recovery over

ry. n = 15 for JLY front membrane bleaching, n = 11 for JLY side membrane

membrane bleaching. Error bars represent SEM.
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Figure 4. Kinetics and Spatial Distribution of Chemoattractant-Stimulated Responses in JLY-Treated Cells

(A) Kinetics of the response to a persistent uniform stimulus (3 nM fMLP). n = 20. Error bars represent SEM.

(B) Kinetics of the response to a micropipette-generated gradient applied for 2 min (brief gradient). n = 14. Error bars represent SEM.

(C) Kinetics of the response to a micropipette-generated gradient applied for 30 min (prolonged gradient). n = 10. Error bars represent SEM.

(D) Representative fluorescence images of JLY-treated cells expressing PH-AKT from the experiments in (A)–(C). The asterisk shows the location of the

micropipette. The dotted yellow line connects the cell centroid to the micropipette tip. Scale bar, 10 mm. See also Movie S8.
cells. Cells were either treated with JLY directly to obtain polar-

ized cells, or first treated with hypotonic buffer to obtain unpolar-

ized cells. With a uniform, low concentration (1 nM) of fMLP, both

PH-AKT and Lifeact translocated uniformly to the membrane in

cells treated with hypotonic buffer (Figure 5A). Following immo-

bilization of the cytoskeleton with JLY in these rounded cells,

PH-AKT still translocated uniformly to the membrane with 1 nM

fMLP stimulation. When the immobilized, unpolarized cells

were exposed to an fMLP gradient from a micropipette, PH-

AKT formed a symmetrical crescent toward the tip. Furthermore,

we were able to rapidly and repeatedly reorient the crescent,

indicating that the cells had a strong directional response but

lacked polarity (Figure 5B; Movie S9).

In contrast, the persistent directional responses of the elon-

gated JLY-treated cells to fMLP gradients were biased toward

the axis of polarity. Kymographs show that the PH-AKT signal

appeared when the gradient was applied and disappeared

when it was removed, whereas the Lifeact signal remained con-

stant throughout the experiment (Figures 5D, 5F, and 5H; Fig-
1116 Cell Reports 9, 1110–1121, November 6, 2014 ª2014 The Auth
ure S2G; Movie S10). Although the Lifeact signal was consis-

tently more prominent at the morphological front of the cell,

some isolated patches of relatively high intensity were also pre-

sent at the back, contributing to the fluctuations seen in the in-

tensity plots. When the micropipette was placed in front of the

cell, PIP3 accumulation was highest at the front with decreasing

responsiveness at the sides and back (Figure 5D). The quantifi-

cation showed that the response was highest toward the needle

and equal on the two sides (Figure 5E). The profile of the distribu-

tion of PH-AKT was centered around the needle position and

overlapped with the distribution of Lifeact at the front of the

cell (Figure 5D). When the pipette was positioned at the side of

a cell, the direction of the strongest response was intermediate

between a line from the cell’s center to the tip of the pipette

and the axis of polarity of the cell, as defined by Lifeact. The pro-

files of the distribution of PH-AKT and Lifeact were shifted (Fig-

ure 5F). Consistently, quantification showed that the side toward

the needle had a higher response than the opposite side (Fig-

ure 5G). Remarkably, when the pipette was positioned at the
ors



back, the steady-state response was at the front (Figures 5H and

5I). The cell continued to respond toward the down side of the

gradient until the pipette was lifted (Figure 5H). These observa-

tions suggest the responses to the gradient and intrinsic polarity

are separable phenomena that are integrated.

DISCUSSION

Our studies of PI3K and SCAR/WAVE activation in moving and

immobilized HL-60 neutrophils with uniform increases and gradi-

ents of chemoattractant yielded several unexpected and impor-

tant findings. First, neither cytoskeletal dynamics nor cell

movement is required to maintain polarized sensitivity. Second,

polarized sensitivity is not dependent on cell shape or volume,

membrane curvature or fluidly, or a preexisting distribution of

PI3K. It correlates strongly with cytoskeletal architecture. Third,

the kinetics of responses to uniform increases and gradients of

chemoattractants are the same in unpolarized and polarized

cells. Finally, the directional response to the gradient is biased

by intrinsic polarity.

Cytoskeletal Dynamics Are Not Needed forMaintenance
of Polarity
Figure 6A outlines a putative scheme for the establishment and

maintenance of polarity in neutrophils. Chemoattractant fMLP

binds to its G protein-coupled receptor (GPCR), releasing Gbg

from inhibitory Gai and activating Ras and PI3K. PIP3 accumu-

lates locally on the membrane, which activates Rac, leading to

actin polymerization and subsequent changes in cytoskeletal ar-

chitecture. It is generally accepted that feedback regulation from

actin to PI3K is through actin polymerization. Consistently, direct

photoactivation of Rac, bypassing the GPCR entry point, led to

actin polymerization, protrusions, and accumulation of PIP3.

When we separated actin polymerization from actin architecture

by treatment with JLY, the accumulation of PIP3 at the leading

edge and the activation of PI3K through photoactivation of Rac

were reduced. This suggests that feedback activation of PI3K

in neutrophils is amplified by new actin polymerization and/or

protrusions. However, in cells that had a static F-actin cytoskel-

eton, both spontaneous and chemoattractant-induced activa-

tion of PI3K still occurred and was polarized. To explain these

observations, we propose that cytoskeletal architecture itself,

not its dynamics, sends a feedback signal that lowers the

threshold for activation of the signal transduction network.

Many ideas about polarity have focused on its initial establish-

ment, during which a protrusion is reinforced by positive feed-

back from signaling or cytoskeletal events and protrusions at

other regions are inhibited. Candidates for global inhibition

have included depletion of positive regulators, membrane curva-

ture, and membrane tension (Arai et al., 2010; Galic et al., 2012;

Houk et al., 2012; Postma and Van Haastert, 2001). However, the

studies presented here show that polarized sensitivity can be

maintained without cytoskeletal dynamics or cell movement.

Once the cells are immobilized, many of the effects of the initial

protrusion, such as new surface contact or pressures on the

membrane, would be expected to dissipate.

We were able to directly rule out a number of factors as con-

tributors to the maintenance of polarized sensitivity. Sensitivity
Cell R
did not correlate with increased or decreased membrane cur-

vature, nor did sensitivity correspond to regions of weak or

strong attachment of the membrane to the cytoskeleton. Mem-

brane fluidity also did not differ between the front and the back.

We were unable to measure membrane tension directly, but it

seems unlikely that the differential tension of a fluid membrane

is maintained in a static cell. We found that PI3K is more easily

recruited to regions enriched in static F-actin, which can ac-

count for the localized PIP3 accumulation without invoking

effects on PIP3 degradation. We cannot rule out the possibility

that some other upstream signal-transduction components

such as a Ras-GEF might be asymmetrically distributed.

Further studies are needed to understand how the immobilized

cytoskeletal architecture influences the local signal transduc-

tion events.

Features of Chemotaxis Are Shared in Dictyostelium
and Human Neutrophils
Many pathways involved in chemotaxis are conserved in neutro-

phils and Dictyostelium amoebae (Artemenko et al., 2014; Ba-

gorda et al., 2006; Wang, 2009). Local Ras activation toward

chemoattractant and spontaneously at the leading edges of

pseudopodia plays a key role in chemotaxis in Dictyostelium.

In the current study, we show that both K Ras and NRas are acti-

vated by fMLP in neutrophils. Furthermore, by using a longer

version of the Ras binding domain of Raf as a biosensor, we

were able to study local Ras activation. Like Dictyostelium, Ras

is activated at the leading edge of migrating HL-60 neutrophils.

The temporal and spatial correlation of Ras activation and PIP3

production suggests they belong to the same signal transduction

network, as has been proposed for Dictyostelium.

In Dictyostelium, separate signal transduction and cytoskel-

etal networks with different kinetics have been defined. Slower,

broader patches and propagating waves of Ras activity and

PIP3 production stabilizemore rapid fluctuations of the cytoskel-

eton leading to sustained protrusions and migration (Huang

et al., 2013). Spontaneous PIP3 patches are seen at the basal

surface of immobilized neutrophils, suggesting there are similar

separate signal transduction and cytoskeletal networks in neu-

trophils. Although we have not observed propagating waves,

the patches have a size and time scale that are consistent with

the characteristics of the protrusions. The randomly appearing

patches suggest that the signal transduction system is excitable

in neutrophils, as has been recently reported for Dictyostelium

(Arai et al., 2010; Huang et al., 2013). That is, perturbations or

noise can drive these events without upstream receptor activa-

tion or feedback from downstream cytoskeleton changes. Since

the patches are more frequent at the front, the static cytoskeletal

architecture appears to bias the excitability, in addition to biasing

the response to an external stimulus.

The surprising maintenance of polarized sensitivity in stalled

neutrophils we report here has not been described in Dictyoste-

lium. Indeed, the fact that Dictyostelium cells immobilized with

latrunculin lose polarized sensitivity has contributed to the belief

that polarity requires cytoskeletal dynamics. It will be interesting

to arrest the cytoskeleton of Dictyostelium cells with a similar

cocktail that preserves morphological polarity and determine

whether polarized sensitivity is maintained.
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-150

100

0

-50

50

-100

Li
fe

ac
t-R

FP

PH
-A

KT
-G

FP

Position (degree, from needle)
-180 -90 0 90 180

(M
em

br
an

e-
cy

to
so

l) 
PH

 g
ra

y 
va

lu
e

0

30

60

Position (degree, from needle)
-180 -90 0 90 180

(M
em

br
an

e-
cy

to
so

l) 
PH

 g
ra

y 
va

lu
e

0

30

60

Position (degree, from needle)
-180 -90 0 90 180

(M
em

br
an

e-
cy

to
so

l) 
PH

 g
ra

y 
va

lu
e

0

30

60

Position (degree, from needle)

-180 -90 0 90 180

(M
em

br
an

e-
cy

to
so

l) 
PH

 g
ra

y 
va

lu
e

0

30

60

Relative position to micropipette
-45 to +45 +45 to +90 -45 to -90

Su
m

m
at

io
n 

of
 d

el
ta

 m
ea

n 
gr

ay
 v

al
ue

 (A
U

)

0

500

1000

1500

Relative position to micropipette
-45 to +45 +45 to +90 -45 to -90

Su
m

m
at

io
n 

of
 d

el
ta

 m
ea

n 
gr

ay
 v

al
ue

 (A
U

)

0

500

1000

1500

A

B

C

PH-AKT

LifeAct

10μm

1nM fMLP

10μm

Hypo
then
JLY

before before 1nM fMLP

***

***

***

***

Relative position to micropipette
-45 to +45 +45 to +90 -45 to -90

S
um

m
at

io
n 

of
 d

el
ta

 m
ea

n 
gr

ay
 v

al
ue

 (A
U

)

0

500

1000

1500

***

*

**

Hypo without JLY Hypo then JLY

-

+D

E
-50

50

100

0

Li
fe

ac
t-R

FP

PH
-A

KT
-G

FP

-200

100

0

-100

Li
fe

ac
t-R

FP

PH
-A

KT
-G

FP

100 300 4002000
Time (sec)

100 300 4002000
Time (sec)

7
6

5
4

3
2

1
0

-50 0 50 100

100 300 4002000
Time (sec)

7
6

5
4

3
2

1
0

-100 0 50 100-150 -50

7
6

5
4

3
2

1
0

-100 0 50 100-150 -50-200

F

H

G

I

Relative position to micropipette

6

5

4

3

2

1

0

5

4

3

2

1

0

4

3

2

1

0

A
ve

ra
ge

 in
te

ns
ity

 o
f L

ife
ac

t (
A

U
) 

A
ve

ra
ge

 in
te

ns
ity

 o
f P

H
-A

K
T 

(A
U

) 

A
ve

ra
ge

 in
te

ns
ity

 o
f L

ife
ac

t (
A

U
) 

A
ve

ra
ge

 in
te

ns
ity

 o
f L

ife
ac

t (
A

U
) 

A
ve

ra
ge

 in
te

ns
ity

 o
f P

H
-A

K
T 

(A
U

) 

A
ve

ra
ge

 in
te

ns
ity

 o
f P

H
-A

K
T 

(A
U

) 

P
os

iti
on

 (f
ro

m
 m

ic
ro

pi
pe

tte
) 

Relative position to micropipette

Relative position to micropipette

P
os

iti
on

 (f
ro

m
 m

ic
ro

pi
pe

tte
) 

P
os

iti
on

 (f
ro

m
 m

ic
ro

pi
pe

tte
) 

10μm

(legend on next page)

1118 Cell Reports 9, 1110–1121, November 6, 2014 ª2014 The Authors



Responses to Spatial and Temporal Chemotactic Stimuli
Are Retained in JLY-Treated Neutrophils
The stimulus-response behavior in JLY-treated neutrophils,

where a uniform global stimulation elicits a transient production

of PIP3 whereas gradient stimulation causes a persistent

response, is consistent with the local excitation global-inhibition

(LEGI) model (Iglesias and Devreotes, 2012; Levchenko and Igle-

sias, 2002; Levine et al., 2006; Parent and Devreotes, 1999; Shi

et al., 2013; Xiong et al., 2010). This model proposes that the

response depends on a balance between local excitatory and

global inhibitory processes. Uniform changes in receptor occu-

pancy initiate rapid changes in the excitatory process and slower

changes in the inhibitory process, causing a transient response.

In a gradient, since inhibition is more global than excitation, there

are persistent positive or negative responses at the front and

back, respectively.

Our observation of a persistent response in a gradient

disagrees with a previous report by Dandekar et al. that PIP3

accumulation toward a gradient generated by an fMLP-filled

micropipette subsided within a few minutes in JLY-treated cells.

They argued that receptor resensitization required cytoskeletal

dynamics and therefore JLY treatment led to termination of the

response (Dandekar et al., 2013). The difference might be due

to the steepness of the applied gradient and the time period as-

sessed. We often noted an initial larger response when the

gradient was first applied that settled into a persistent steady-

state response toward the high side.

Directional Response Depends on the Chemoattractant
Gradient and Intrinsic Polarity
The well-known U-turn behavior of neutrophils toward a new

source of chemoattractant suggests the influence of intrinsic po-

larity on directional sensing, but the dynamics make it difficult to

distinguish the effects of the gradient and polarity. The ability to

stall neutrophils provided a means to study the interaction of the

gradient and polarity in isolation.We found that while a persistent

steady-state response required a gradient, the response was

biased by the intrinsic polarity of the cell. Thus, polarity appears
Figure 5. Directional Response in Unpolarized and Polarized Cells in a

(A) Fluorescence images of neutrophils coexpressing PH-AKT and Lifeact treate

stimulated with fMLP. Arrowheads indicate the PH-AKT signal of the same cell b

(B) PH-AKT response toward repeatedly reoriented fMLP-filled micropipette in ce

the cell centroid to the pipette tip. Line graphs show the relationship betweenmem

is intersection of yellow line in (B) with membrane. Values to the right (or left) were

side of the cell. The pipette was lifted in the third panel. For this condition, the ve

(C) A schematic of a cell showing how the position from the needle is determined fo

of the cell membrane with the line connecting the micropipette to the cell centroid

positions between red and green circles are either positive or negative, as indica

(D) PH-AKT response to an fMLP-filled micropipette placed toward the front of a

Snapshots of PH-AKT and Lifeact signals at 200 s are shown. Dotted yellow line

cell perimeter over time. Intensity plots of the mean intensity of PH-AKT (green line

the fMLP stimulation are also shown.

(E) Statistics of the response from (D) for 26 separate cells. ***p < 0.001. Error ba

(F) PH-AKT response to an fMLP-filled micropipette placed toward the side of J

tensity plots as in (D).

(G) Statistics of response from (F) for 20 separate cells. *p < 0.05; **p < 0.01; ***p

(H) PH-AKT response to an fMLP-filled micropipette placed toward the back of

intensity plots as in (D).

(I) Statistics of response from (H) for 18 separate cells. ***p < 0.001. Error bars re
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to modulate the threshold for generation of a response. We

speculate that the overall directional response of a cell is a com-

bination of the effects of the gradient and intrinsic polarity as

shown in Figure 6B. The two vectors in the diagram represent

the response to the chemoattractant gradient (C) and the

intrinsic polarity (P). In unpolarized cells, the response depends

only on C. In polarized cells, however, P causes the overall

response to be biased toward the axis of polarity. When the

gradient and polarity are aligned, the response to the gradient

is enhanced by polarity. With an angle between the vectors,

the overall response falls between them. A ‘‘vector sum’’

behavior has been predicted by mathematical calculations of

the optimal gradient sensing response by Andrews et al. with

the LEGI model (Andrews and Iglesias, 2007). The observation

that polarity was able to bias the response even when the

gradient was applied close to the back of a cell (Figure 5) can

explain why cells can make U-turns when gradients are

reversed.

Taken together, these observations suggest that the amplified

signal transduction events seen at the leading edge of migrating

neutrophils require feedback from actin polymerization and/or

cell movement but that a static cytoskeletal architecture is suffi-

cient to differentially affect the threshold for chemoattractant-eli-

cited or noise-generated activity. The anterior-posterior gradient

in sensitivity displayed by migrating cells appears to be derived

from this altered threshold.
EXPERIMENTAL PROCEDURES

Cell Culture and Virus Infection

HL-60 cells were cultured in RPMI 1640 containing GlutaMAX-1 (GIBCO) sup-

plemented with 20% heat-inactivated fetal bovine serum (Gibco), 100 U/ml

penicillin, and 100 mg/ml streptomycin in a 5% CO2 incubator at 37
�C. Differ-

entiation toward neutrophil-like cells was induced by adding 1.3% DMSO

(Sigma-Aldrich) into the culture medium for 5 days. HL-60 cells were infected

with lentivirus (a gift from Dr. Cooper and Dr. Desiderio) carrying different fluo-

rescent proteins and selected by fluorescence-activated cell sorting (FACS).

For a complete description of methods, see Supplemental Experimental

Procedures.
Chemoattractant Gradient

d with 1:1 hypotonic buffer without (left) or with (right) the addition of JLY and

efore and 30 s after adding fMLP. Scale bar, 10 mm.

lls treated with hypotonic buffer followed by JLY. Dotted yellow line connects

brane PH-AKT and chemoattractant gradient direction. Vertical red dotted line

obtained by tracing clockwise (or counterclockwise) to a point on the opposite

rtical line was kept in the previous position. See also Movie S9.

r kymographs in (D), (F), and (H). The red and green circles are the intersections

. The circle closest to the micropipette (red) is defined as ‘‘position 0.’’ Values at

ted by ‘‘+’’ and ‘‘�,’’ respectively.

JLY-treated cell between 25 and 325 s (marked by the up and down arrows).

as in (B). Kymograph shows the membrane PH-AKT intensity around the entire

) and Lifeact (dashed line) obtained from ten continuous frames in the middle of

rs represent SEM.

LY-treated cells. Dotted yellow line as in (B). Snapshots, kymographs, and in-

< 0.001. Error bars represent SEM.

JLY-treated cells. Dotted yellow line as in (B). Snapshots, kymographs, and

present SEM. See also Movie S10 and Figure S2.
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Figure 6. A Putative Scheme for the Establishment andMaintenance

of Polarity in Neutrophils

(A) Chemoattractant fMLP binds to its GPCR, thereby releasing Gbg from

inhibitory Gai and activating Ras and PI3K. PIP3 accumulates locally on the

membrane, which activates Rac, leading to actin polymerization and subse-

quent changes in cytoskeletal architecture. We propose the feedback regu-

lation of PI3K is dependent on actin polymerization (and weakly from direct

interaction with activated Rac). JLY treatment inhibits cytoskeletal dynamics,

so Rac-induced actin polymerization is abolished. Cytoskeletal architecture

remains and alters the threshold for activation of the signal transduction events

by chemoattractant.

(B) Overall directional response of the cell depends on the external chemo-

attractant gradient and intrinsic polarity. Evidence presented here is consistent

with the hypothesis that the overall directional response is a combination of the

response to the external gradient and intrinsic polarity as indicated on left.

Three examples illustrated cases where the two vectors are almost aligned,

nearly orthogonal, or in nearly opposite directions.
Microscopy and Image Analysis

For live-cell imaging, HL-60 neutrophils were collected, washed and resus-

pended with modified Hank’s balanced salt solution (mHBSS) containing

0.2% BSA and then seeded on Lab-Tek chambered cover glasses (NUNC)

coated with 50 mg/ml human fibronectin (Sigma-Aldrich). Time-lapse micro-

scopy was performed on a Leica Spinning Disk Confocal microscope. Chemo-

attractant fMLP (Sigma) was given to cells either globally or delivered by a

Femtotips micropipette (Eppendorf). TIRF microscopy was performed using

a Nikon Eclipse Ti-E TIRF microscope. FRAP was performed on Zeiss Axiovert

200 laser scanning microscope with the LSM510-Meta confocal module. For

immunofluorescent staining, cells were fixed and then stained with anti-PI 3-

kinase, p110g (clone 17D7.2, Merck Millipore) in PBS containing 1% BSA as

indicated in Supplemental Experimental Procedures. Images were analyzed

with ImageJ (NIH) as described in Supplemental Experimental Procedures.

Different Methods of Generating Immobile Cells

JLY was used to arrest cytoskeletal dynamics and maintain cell shape as

described previously (Peng et al., 2011). A total of 10 mM Y27632 was added

to neutrophils, and 5 mM latrunculin B and 8 mM jasplakinolide were added

10 min later. In order to get highly polarized cells more easily, for Figures 1B,

3A, 4D, and 5D, 5F, and 5H, the following protocol was used: Y27632 was

added for 10 min, then cells were pretreated with 1 nM fMLP for 2 min, before
1120 Cell Reports 9, 1110–1121, November 6, 2014 ª2014 The Auth
adding jasplakinolide and latrunculin B; after another 10 min, cells were

washed with mHBSS to remove fMLP and JLYwas added again. PIP3 produc-

tion was measured 10 min later. To obtain rounded cells, latrunculin B alone

was used for FRAP assays, latrunculin B plus nocodazole was used for global

stimulation with fMLP, or hypotonic buffer was used for micropipette assays.

In latrunculin B-treated neutrophils, we found that the PH-AKT biosensor

tended to aggregate, interfering with the interpretation. Nocodazole inhibited

the aggregation. Alternatively, cells were treated with hypotonic buffer

(ddH2O + 1 mM MgCl2 + 1.2 mM CaCl2) for 20 min. Eventually, after fMLP

exposure, cells treated with hypotonic buffer would begin to migrate; we

added JLY to prevent this.

Photoactivatable Rac Study

HL-60 cells were transfected with yellow fluorescent protein (YFP)-fused pho-

toactivatable Rac1 (a gift from Dr. Yi Wu) and RFP-fused PH-AKT. Cells were

irradiated with blue light (Zeiss filter set 38 HE enhanced GFP shift free with the

wavelength between 430 nm and 510 nm) for 0.5 s to transiently activate Rac,

and images were taken every 10 s using Zeiss fluorescent microscope.

Statistics

Statistical analysis was done using Sigma-plot. Differences among groups

were analyzed using one-way ANOVA, followed by Tukey test, if the differ-

ences between groups were statistically significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

two figures, and ten movies and can be found with this article online at
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